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Abstract

A steady ideal fluid flow on a surface corresponds to a geodesic in the area-preserving diffeomor-
phism group. The sign of the curvature operator along this geodesic has been of interest since Arnold
noticed its connection to Lagrangian stability of the flow: nonpositive curvature implies by the Rauch
comparison theorem that Lagrangian perturbations grow at least linearly in time.

We obtain a new necessary and sufficient criterion for a steady flow with analytic stream function
and isolated zeroes to have nonpositive curvature operator: either the surface is a flat torus, and the
fluid flow has constant pressure; or the surface is a sphere, disc, or annulus with a globally-defined
polar coordinate system such that the metric is ds2 = dr2 + ϕ2(r)dθ2. In the latter case, the velocity
field must be of the formX = u(r)∂θ. Furthermore, the functionQ = (uϕ′)′/u′ must be defined for
everyr and satisfy the differential inequalityϕQ′ +Q2 ≤ 1.

This criterion is proved by using a new formula for the curvature of the area-preserving diffeomor-
phism group in the rotationally symmetric case, involving only first integrals in one variable, rather
than infinite sums or the solution of a PDE.

Elementary consequences of the criterion are also discussed: for example, there are no flows with
nonpositive curvature operator on the standard round sphere; and on a flat surface, every rotationally
symmetric flow has nonpositive curvature operator. Finally we show that if a steady flow satisfies
both this nonpositive curvature criterion and the well-known Eulerian stability criterion of Arnold,
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then all Lagrangian perturbations grow polynomially in time, in theL2 norm. Thus this is the first
time methods of Riemannian geometry have given rigorous information on stability.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The discovery by Arnold[2] that the motion of an ideal fluid on a manifoldM is given by
geodesics on the volume-preserving diffeomorphism groupDµ(M) has led to an interest in
the curvature of this infinite-dimensional Riemannian manifold. Since Jacobi fields along
geodesics represent linearized Lagrangian perturbations of ideal fluid motion, the sign of
the curvature gives information about linear stability.

Arnold [2] was the first to compute a formula for the curvature onDµ(T2), using Fourier
series. Lukatsky[5] used a similar technique to find a formula for the curvature ofDµ(M) for
any compact surface. Simpler formulas were obtained forDµ(S2) by Arakelyan-Savvidy
[1], Dowker-Wei [4], and Yoshida[12], using special properties of spherical geometry.
Other general formulas have been derived using submanifold geometry by Misiołek[7]
and using the Jacobi equation by Rouchon[10]. These formulas have generally suffered
the drawback of being computationally unwieldy, requiring infinite sums or the solution of
partial differential equations, and thus many properties of curvature have been obscured.

One is mainly interested in the sign of the curvature operator along a particular geodesic.
If R̃ denotes the curvature tensor onDµ(M) andX is the velocity field tangent to the geodesic,
then the curvature operatorR̃X := Y �→ R̃(Y,X)X appears in the Jacobi equation. We hope
to find conditions onX such thatR̃X is either nonpositive or nonnegative in all directions.

The case in which̃RX is nonpositive is especially interesting from the view of Lagrangian
stability, since for such flows we know by the Rauch comparison theorem that Jacobi fields
must grow in time. Therefore, finding criteria for a flow to have such curvature is the only
known rigorous way to prove Lagrangian instability using geometric techniques.

Flows generating nonnegative curvature operators are completely understood. Misiołek
[7] demonstrated that ifX is a Killing field on an arbitrary manifoldM, then the curvature
operator is nonnegative. Rouchon[10] proved the converse, at least for the special case of
a domain inR

3 (the technique is very easily generalized to an arbitrary manifold of any
dimension, as shown in the author’s dissertation[8]).

For nonpositive curvature, progress has been slower. Arnold[2] showed that fork ∈ N,
the vector fieldX = sin(kx)∂y on the torusT2 had nonpositive curvature operator. Misiołek
[7] and Lukatsky[6] separately proved the more general result that ifX is a divergence-
free field on a manifoldM with nonpositive curvature and satisfies∇XX = 0 (that is, the
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flow of X consists of geodesics onM), thenR̃X is nonpositive. Misiołek called such vector
fields “pressure-constant.” It was unknown whether there were any other vector fields which
would makeR̃X nonpositive.

In this paper we demonstrate that there are many choices ofX which are not pressure-
constant but which have nonpositive curvature operator. We obtain a necessary and sufficient
criterion for a vector fieldX on an orientable surfaceM to have nonpositive curvature
operator, under the condition thatX generate a steady fluid flow (i.e. that the corresponding
geodesic inDµ(M) is also a 1-parameter subgroup). We also assume for convenience that
X has only isolated zeroes and has a real-analytic stream function.

The criterion is thatX must be of the form

X = u(r)∂θ (1.1)

on a rotationally symmetric manifoldM with Riemannian metric of the form

ds2 = dr2 + ϕ2(r) dθ2 (1.2)

for some functionsuandϕ. M must be either a torus with a flat metric (so thatϕ is constant),
or a disc, sphere, or annulus. In these latter cases, the quantity

Q(r) ≡ (d/dr)(u(r)ϕ′(r))
u′(r)

(1.3)

must be defined for allr and satisfy the differential inequality

ϕ(r)Q′(r) +Q2(r) ≤ 1 for all r. (1.4)

The proof has two parts. First, inSection 3we show that ifX generates a steady fluid flow
andY is another divergence-free vector field with [X, Y ] = 0, then〈〈R̃(Y,X)X, Y〉〉 ≥ 0.
Thus it is fairly easy to find examples of sections where the curvature is either zero or
positive. IfX = sgradf , thenY = f sgradf is one example, and we can easily show that
the curvature is in fact positive unlessX〈X,X〉 ≡ 0. If X〈X,X〉 ≡ 0, then the speed of each
particle remains constant in time, and we demonstrate that this condition, combined with
incompressibility, imply rotational symmetry not only for the flow but for the surface as
well. Thus the condition that̃RX be nonpositive impliesEqs. (1.1) and (1.2).

In addition, we can perform a local analysis of this condition near an isolated zero ofX,
and conclude that any isolated zeroes ofX must be elliptic. This implies that the surface is
either a sphere, a disc, an annulus, or a torus. In this way we obtain a structure theorem: any
flow for which the curvature operator is nonpositive must have a very special rotationally
symmetric form. By narrowing down the possibilities this way, we are able to set up the
more explicit analysis of the next section.

Surprisingly, the case of the torus is quite different from the other surfaces. The reason
is that on the other surfaces, every rotationally symmetric flow is actually a steady solution
of the Euler equations. On the torus this is not necessarily the case, due to the nontrivial
homology (basically,∇XX is a vector field whose curl vanishes, but on the torus it need not
be the gradient of an actual function). Because of this, we can find many other examples of
fieldsY commuting withX which also yield strictly positive sectional curvature, unlessM
is actually flat andX is therefore pressure-constant. So this reduces to Misiołek’s result, and
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this is how we get all the previously known examples on the torus. For the other surfaces,
we need to analyze the formulas more carefully.

In Section 4we provide a very explicit new formula for the curvature along a rotationally
symmetric flow in terms of first integrals of various explicit functions, which are slightly
different in each of the three remaining cases (sphere, disc, and annulus). This is the first
time such a formula for the curvature has been obtained, even for a special case such as
this, which does not involve either infinite sums or the (implicit) inversion of the Laplacian.
The reason we can obtain such a formula is basically because in the rotationally symmetric
two-dimensional case, the Laplacian can be inverted quite explicitly.

In Section 5, we show how this formula for the curvature can be written as a sum
of nonpositive terms and a term involving the functionQ. If Q is defined everywhere and
satisfies (1.4), we show that then〈〈R̃X(Y ), Y〉〉 ≤ 0 for allY. If not, we show how to construct
aYwhich yields positive curvature.

In Section 6, we derive some interesting consequences of the condition (1.4). For ex-
ample, ifϕ(r) = r (so thatM is the standard flat disc or annulus inR

2), thenQ(r) ≡ 1
and the condition is automatically satisfied; thus for every rotational flow on the flat disc
or annulus,R̃X is nonpositive. The caseϕ(r) ≡ 1 is the pressure-constant case on an an-
nulus, which yieldsQ(r) ≡ 0, reproducing Misiołek’s result. The flat disc, the flat an-
nulus, and the flat cylinder are the only spaces on which every steady rotational flow
has nonpositive curvature operator. We show that on every nonflat rotationally symmet-
ric surface, there are some flows which do satisfy the criterion and others which do
not.

If the curvature ofM is either always positive or always negative, we can determine
qualitative criteria for the existence of flowsX, with a stream function and isolated zeroes,
with R̃X nonpositive. For example, for such a flow,u cannot have a maximum or minimum
except whenϕ vanishes (i.e., where the metric becomes singular, either at the center of a
disc or the two poles of a sphere).

In addition, we show that there are no such flows on a positive-curvature sphere. Thus, in
a sense, if the curvature of the underlying manifold is sufficiently positive, then the curvature
of the volume-preserving diffeomorphism group must also be somewhere positive, at least
in any section containing a steady flow.

Finally we discuss consequences for Lagrangian stability. The Rauch comparison the-
orem, as proven forDµ(M) by Misiołek [7], shows that if the curvature operatorR̃X is
nonpositive, then all Jacobi fieldsY grow at least linearly in time, in theL2 norm. So we
have at least “slow” (polynomial) instability in the Lagrangian sense, uniformly for all
Lagrangian perturbations, for flows satisfying this condition, and this was not previously
known.

Even though the curvature operator of such a flow is zero in some directions and negative-
definite in many, we cannot say that Jacobi fields necessarily grow exponentially in time.
This is because the explicit example of the author[9], computing the growth rate of Jacobi
fields along plane-parallel Couette flow, shows that linear growth of Jacobi fields is more
typical. It had been previously conjectured by many authors that negative-curvature di-
rections would imply “fast” (exponential) Lagrangian instability, but the author’s previous
work shows that the difference between fast and slow instability cannot be determined by
curvature alone, but only by the Eulerian stability of the flow.
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One interesting result is that ifX = u(r)∂θ satisfies the inequality (5.3) and also the
Arnold Eulerian stability criterion

(d/dr)((1/ϕ)(d/dr)(ϕ2u))

ϕu
�= 0,

then by a theorem in the author’s previous paper[9] we get both a lower bound and an upper
bound for the long-time growth of every Jacobi field inL2: at least O(t) and at most O(t2).
So we are guaranteed slow instability in this case.

We conclude inSection 7with some natural questions inspired by this research, including
the generalizations to three dimensions and to nonsteady flows. For an excellent general
overview of the subject, see Chapter 4 of Arnold-Khesin[3].

2. Review of geometry formulas

LetMbe an orientable surface, possibly with boundary∂M. The group under composition
of diffeomorphisms ofM is denotedD(M). For simplicity we will assume all objects are
C∞.

At a diffeomorphismη ∈ D(M), the tangent spaceTηD(M) consists of elementsU ◦ η,
whereU is a vector field onM. If 〈·, ·〉 is the Riemannian metric onM andµ is the
corresponding area 2-form, the Riemannian metric〈〈·, ·〉〉onTηD(M) is given by the formula

〈〈U ◦ η, V ◦ η〉〉 =
∫
M

〈U,V 〉 ◦ ηµ, for any vector fieldsU andV. (2.1)

Given a vector fieldX onM, we may construct a right-invariant vector fieldX onD(M) by
definingXη = X ◦ η for eachη ∈ D(M). The covariant derivativē∇ onD(M) then satisfies

(∇̄XY)η = (∇XY ) ◦ η (2.2)

on right-invariant vector fields. See Misiołek[7] for details.
Now considerDµ(M), the submanifold ofD(M) consisting of diffeomorphismsη sat-

isfying η∗µ = µ. At any η, the elements of the tangent spaceTηDµ(M) are of the form
X ◦ η, whereX is divergence-free and tangent to the boundary. TheL2 metric (2.1) onD(M)
induces a metric onDµ(M) defined by

〈〈U ◦ η, V ◦ η〉〉 ≡
∫
M

〈U,V 〉 ◦ ηµ =
∫
M

〈U,V 〉µ.

This induced metric is right-invariant.
An arbitrary vector field (not necessarily tangent to∂M) can be orthogonally projected

onto the space of divergence-free vector fields tangent to the boundary using the Hodge
decomposition. We notice first that the space of gradients of functions onM is the orthogonal
complement ofTidDµ(M) in TidD(M), since for anyφ : M → R and anyV ∈ TidDµ(M),
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we have∫
M

〈V,∇φ〉µ =
∫
M

div(φV )µ−
∫
M

φ divV µ =
∫
∂M

φ〈V, n〉ιnµ = 0.

Thus, given a vector fieldZ, we solve the Neumann boundary value problem

�f = divZ, 〈∇f, n〉|∂M = 〈Z, n〉|∂M

to obtain a functionf, unique up to a constant, and then define the orthogonal projection
P(Z) as

P(Z) = Z − ∇f. (2.3)

By construction,P(Z) is divergence-free and tangent to the boundary.
The covariant derivativẽ∇ on the submanifoldDµ(M) is the projection of the covariant

derivative∇̄. For right-invariant fieldsX andY, then, we have

(∇̃XY)η = P(∇XY ) ◦ η. (2.4)

The curvature on the volume-preserving diffeomorphism group is denotedR̃. Since the
metric onDµ(M) is right-invariant, so is the curvature, and it is sufficient to perform all
computations at the identity. By formula (2.4), the Riemann curvature operator is given by

R̃X(Y ) ≡ R̃(Y,X)X = P(∇YP(∇XX) − ∇XP(∇YX) + ∇[X,Y ]X). (2.5)

The sectional curvaturẽK of the 2-plane spanned by vectorsX andY in TidDµ(M) is given
by

K̃ (X, Y ) = 〈〈R̃(Y,X)X, Y〉〉
〈〈X,X〉〉〈〈Y, Y〉〉 − 〈〈X, Y〉〉2

.

However we are concerned only with the sign of the sectional curvature, and so the normal-
izing factor in the denominator is unimportant. Thus we will work with the non-normalized
curvature, which we denote by

K (X, Y ) = 〈〈R̃(Y,X)X, Y〉〉,

or simplyK if the 2-plane is fixed.
The Euler equation, satisfied by the tangent vector to a geodesic (right-translated to the

identity) is

∂X

∂t
+ P(∇XX) = 0.

In caseX is independent of time, we have the steady Euler equationP(∇XX) = 0, which is
often written in the form∇XX = −∇p, wherep is the pressure. In this case, the geodesic
is a 1-parameter subgroup of the volume-preserving diffeomorphism group, and the first
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term of the curvature formula (2.5) vanishes. This simplification is our primary reason for
working only with steady solutions of the Euler equation, although typically in studies of
stability these are the only ones considered anyway.

3. The nonpositivity structure theorem

In what follows we use the fact that ifP(∇XX) = 0 and [X, Y ] = 0, then most of the
terms in the curvature formula (2.5) vanish. We impose the requirement that the steady
vector fieldX have a globally defined stream functionf, so thatX = sgradf ; this makes it
easy to find a commuting vector fieldY.

Proposition3.1. SupposeM isa two-dimensionalmanifold,possiblywithboundary. Let f be
a function on M which is constant on each boundary component of M. DefineX = sgradf ,
and suppose that∇XX = −∇p for some function p.

If 〈〈R̃(Y,X)X, Y〉〉 ≤ 0 for every divergence-free Y tangent to∂M, thenX〈X,X〉 = 0.

Proof. DefineY = fX. SinceX(f ) = 〈sgradf,∇f 〉 = 0, we know thatY is divergence-
free and tangent to∂M, and also that [X, Y ] = 0. Then sinceP(∇XX) = 0 by assumption,
formula (2.5) implies

〈〈R̃(Y,X)X, Y〉〉 = −
∫
M

〈Y,∇XP(∇YX)〉µ =
∫
M

〈P(∇YX),P(∇YX)〉µ.

Thus we must haveP(∇YX) = 0, so that∇YX = ∇q for some functionq. Thus

∇q = f∇XX = −f∇p = −∇(fp) + p∇f,

and therefore sgrad(q+ fp) = pX. As a result,

0 = div(pX) = pdivX+X(p) = X(p).

SoX(p) = 0.
Since∇XX = −∇p, we knowX〈X,X〉 = −2X(p) = 0, and we are done. �

Lemma 3.2. Suppose X is a divergence-free vector field on a surface satisfyingX〈X,X〉 =
0 everywhere. Then any isolated, nondegenerate zero of X must be elliptic(i.e. with index
+1).

Proof. Choose normal coordinates in a neighborhood of an isolated, nondegenerate zero
of X, so that the metric looks like

ds2 = dx2 + dy2 + O(x2 + y2),

andX(0,0) = 0. Write

X = (ax+ by)∂x + (cx+ dy)∂y + O(x2 + y2).
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Then the divergence-free condition impliesd = −a, while the nondegeneracy condition
impliesa2 + bc �= 0, and we can compute

X〈X,X〉 = 2(a2 + bc)[ax2 + (b+ c)xy − ay2] + O((x2 + y2)3/2).

So we must havea = 0 andb = −c, with c �= 0, which clearly is an elliptic zero. �
In the following we give a structure theorem which severely restricts the types of steady

flows that have nonpositive curvature operators. The assumptions that the zeroes ofX are
isolated and thatX has a global stream function are somewhat restrictive, but still allow
many flows. It seems likely that more sophisticated techniques could be used to eliminate
these assumptions.

Theorem 3.3. Suppose X is a vector field on an orientable surface M of the formX =
sgradf , with f a function on M having only isolated, nondegenerate zeroes, and constant
on each component of∂M. Suppose thatX〈X,X〉 = 0 everywhere on M.

Then the following hold:

• M is either a sphere, a torus, a disc, or an annulus.
• M has a globally defined metric of the formds2 = dr2 + ϕ2(r) dθ2, whereθ ∈ S1, and

there is someR > 0 such that: –
– If M is a torus, thenr ∈ S1(R), the circle with circumference R, andϕ(r) is periodic

in r and nowhere vanishing.
– If M is a sphere, thenr ∈ [0, R] andϕ(r) vanishes iffr = 0 or r = R.
– If M is a disc, thenr ∈ [0, R] andϕ(r) vanishes iffr = 0.
– If M is an annulus, thenr ∈ [0, R] andϕ(r) is nowhere vanishing.

• X = u(r)∂θ, with u(r) nowhere vanishing.

Proof. SinceX is tangent to the boundary, the condition thatX〈X,X〉 = 0 implies thatX
either vanishes everywhere on the boundary or vanishes nowhere. By assumption, the zeroes
ofXare isolated, and thusXcannot vanish on the boundary. So we can use the standard Hopf–
Poincaŕe theorem, which says that the sum of the indices ofX is the Euler characteristic of
the manifold. Since the indices are all+1 byLemma 3.2, the Euler characteristic can only
be 2, 1, or 0. Thus ifX has two zeroes, thenM must be a sphere. IfX has one zero,M must
be a disc. IfX has no zeroes, thenM is either an annulus or a torus.

Let E be the unique unit vector field which is everywhere perpendicular toX, with
µ(E,X) > 0. (E is defined at every point except at the two possible zeroes ofX.) Then the
divergence ofX is given by

divX = 〈∇EX,E〉 + 1

〈X,X〉 〈∇XX,X〉 = 0,

and thus since〈∇XX,X〉 = 0, we must have〈∇EX,E〉 = 0. The consequence is that
〈∇EE,X〉 = 0.

Since we obviously have〈∇EE,E〉 = 0, we therefore know that∇EE = 0. This implies
that the integral curves ofE are geodesics. We will define the radial coordinater to be the
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parameter along each geodesic, so thatE = ∂/∂r. If M is a sphere or a disc,r will be zero
at one of the zeroes ofX. On an annulus, we setr = 0 on one boundary component. On a
torus, the zero set ofr can be any integral curve ofX.

SinceX = sgradf , we know that every nonsingular integral curve is a level set off, and
thus is diffeomorphic to a circle. The equation〈X, ∂/∂r〉 = 0 implies that each curve is a
level set ofr as well. For eachr0, the flow ofX maps any point on the circler = r0 to itself
after a timeT (r) > 0. Fix a radial geodesic, and define the angular coordinateθ to be the
flow of each point on this geodesic for timeθ under the vector field (T (r)/2π)X. Then we
have, for eachr0, a diffeomorphism of the standard circleS1(2π) to the level setr = r0.

In these coordinates the metric takes the form

ds2 = dr2 + ϕ2(r, θ) dθ2.

Definingu(r) = 2π/T (r), we find thatX = u(r)∂θ. Thus the conditionX〈X,X〉 = 0 implies
thatϕ is a function ofr alone.

All that remains is to check the stated behavior ofϕ andu at an isolated zero ofX. In a
neighborhood of an isolated zero, our coordinate system coincides with Riemannian normal
coordinates, and by the usual smoothness requirements, we can see thatϕ must vanish to
first order at a zero ofX. Thusu cannot also vanish at a zero ofX, by nondegeneracy. �

It is easy to see that the converse of this theorem is true as well: ifX andM have the
properties stated in the conclusion, thenX will be a steady Euler flow. The only case in
which this might not work is ifM is a torus; in that case,∇XX = −u2(r)ϕ(r)ϕ′(r)∂r, and
this is only the gradient of a function on the torus if the condition∫ R

0
u2(r)ϕ(r)ϕ′(r) dr = 0

holds, since the pressure function must also have periodR.
This odd property of the nonflat torus actually enables us to eliminate it as a candidate

for having a flow with nonpositive curvature operator.

Proposition 3.4. If X = u(r)∂θ is a steady solution of the Euler equation on a torus
T

2 = S1(R) × S1(2π) with metricds2 = dr2 + ϕ2(r) dθ2, then the curvature operator̃RX
is nonpositive if and only ifϕ is constant.

Proof. Let Y = v(r)∂θ for some functionv(r). Then [X, Y ] = 0, so that the curvature of
the diffeomorphism group reduces to

〈〈R̃(Y,X)X, Y〉〉 =
∫
M

〈P(∇YX),P(∇YX)〉µ.

We compute that

∇YX = −v(r)u(r)ϕ(r)ϕ′(r)
∂

∂r

= ∇
(

−
∫ r

0
vuϕϕ′ dρ + r

R

∫ R

0
vuϕϕ′ dρ

)
−
(

1

R

∫ R

0
vuϕϕ′ dρ

)
∂

∂r
,
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so that

P(∇YX) = −
(

1

R

∫ R

0
v(ρ)u(ρ)ϕ(ρ)ϕ′(ρ) dρ

)
∂

∂r
.

An easy way to make this nonzero is to choosev(r) = u(r)ϕ(r)ϕ′(r), if ϕ is not constant.
Then the curvature will be strictly positive.

If, on the other hand,ϕ is constant, then we can compute that∇XX = 0 and also that
the curvature ofM vanishes. In this case,X is a pressure-constant flow in the terminology
of Misiołek [7], who proved that such flows have nonpositive curvature operatorR̃X using
a different curvature formula. �

4. Explicit formulas for curvature

Theorem 3.3reduces the question of nonpositive curvature to certain special cases. To
obtain further results, we compute an explicit formula for the curvature operatorR̃X, where
X = u(r)∂θ and the metric is ds2 = dr2 + ϕ2(r) dθ2. We assume the manifold is defined by
the inequalities 0≤ r ≤ R and is either an annulus, a disc, or a sphere.

First we compute the curvature operator directly from the definition. We will use the
convenient fact that on all three surfaces, every divergence-free vector fieldY which is
tangent to the boundary can be written asY = sgradg, whereg is constant on each boundary
component. Because of the rotational symmetry, it is natural to expandg as a Fourier series
g(r, θ) = ∑∞

n=−∞ gn(r) einθ, whereg−n(r) = ḡn(r). We consider a particular component of
this expansion, and let

Yn = sgrad(gn(r) einθ). (4.1)

If n �= 0, then sincegn(r) einθ must be constant on the boundary, we must havegn(r) = 0
on the boundary. On the other hand,g0 may be an arbitrary constant on each boundary
component.

Proposition 4.1. IfX = u(r)∂θ on an annulus,disc,or sphere with a rotationally symmetric
metric, then the curvature operator of the diffeomorphism group in direction X is given by
R̃X(Y0) = 0 and, if n �= 0,

R̃X(Yn) = P
(

−inu′(r)v(r)gn(r) einθ∂r − v(r)v′(r)
ϕ(r)

gn(r) einθ∂θ − inu′(r)qn(r) einθ∂r

− inv(r)

ϕ(r)
qn(r) einθ∂r + v(r)

ϕ(r)
q′
n(r) einθ∂θ

)
, (4.2)

wherev(r) ≡ u(r)ϕ′(r) andqn is defined to be the solution of the Neumann problem

1

ϕ(r)

d

dr

(
ϕ(r)

dqn
dr

)
− n2

ϕ2(r)
qn(r) = 1

ϕ(r)

d

dr
(ϕ(r)v′(r)gn(r)) + n2u′(r)

ϕ(r)
gn(r) (4.3)

with boundary conditionq′
n = 0.
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Proof. SinceP(∇XX) = 0, formula (2.5) simplifies to

R̃X(Y ) = P(−∇XP(∇YX) + ∇[X,Y ]X). (4.4)

First, in casen = 0, we haveY0 = sgradg0(r) = (g′
0(r)/ϕ(r))∂θ. We compute∇YX =

−g0(r)u(r)ϕ′(r)∂r, and since this is a gradient, we knowP(∇YX) = 0. Also, we obviously
have [X, Y ] = 0. Thus both terms in formula (4.4) vanish, soR̃X(Y0) = 0.

In the remainder of the proof we suppose thatn �= 0, so thatgn vanishes on the boundary
(if any). Then we can write, by formula (4.1),

Yn(r, θ) = − in

ϕ(r)
gn(r) einθ∂r + 1

ϕ(r)
g′
n(r) einθ∂θ.

For brevity, we will use the abbreviationen ≡ einθ.
We first compute∇YnX.

∇YnX = v′gnen∂r − inu′

ϕ
gnen∂θ − ∇(vgnen). (4.5)

Using formula (2.4) and the fact thatP vanishes on gradients, we find that

P(∇YnX) = v′gnen∂r − inu′

ϕ
gnen∂θ − q′

nen ∂r − in

ϕ2
qnen∂θ, (4.6)

whereqn(r) einθ is defined to be the solution of the Neumann problem

�(qn(r) einθ) = div

(
v′(r)gn(r) einθ∂r − inu′(r)

ϕ(r)
gn(r) einθ∂θ

)
.

Computing the Laplacian and divergence explicitly, we obtain formula (4.3). The condition
thatq′

n vanish on the boundary is a consequence of the fact thatgn vanishes on the boundary.
Having obtained formula (4.6), the other terms of formula (4.4) are straightforward to

compute.
We obtain:

∇XP(∇YnX) = in(uv′ + vu′)gnen∂r + n2uu′ + vv′

ϕ
gnen∂θ

+ in

(
u′ + v

ϕ

)
qnen∂r − v

ϕ
q′
nen∂θ − ∇(inuqnen),

∇[X,Yn]X = inuv′gnen∂r + n2uu′

ϕ
gnen∂θ − ∇(inuvgnen).

Combining the two expressions, and using the fact thatP vanishes on gradients, we obtain
formula (4.2). �

We immediately obtain the following useful consequence of formula (4.2).

Proposition 4.2. The curvature operator̃RX is nonpositive if and only if, for everyn > 0
and every vector fieldYn of the form(4.1),the sectional curvatureK (X, Yn) is nonpositive.
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Proof. Formula (4.2) shows that〈〈R̃(Yn,X)X, Ym〉〉 = 0 unlessm = −n, by the usual
orthogonality of Fourier series. Thus we can write

〈〈R̃X(Y ), Y〉〉 =
∞∑

n=−∞
〈〈R̃(Yn,X)X, Ȳn〉〉 = 2

∞∑
n=1

K (X, Yn).

The proposition is then obvious. �

In the next proposition we show how the seemingly complicated formula (4.2) leads to
a much simpler expression for the sectional curvature.

Proposition 4.3. If n �= 0, the curvatureKn ≡ 〈〈R̃(Yn,X)X, Ȳn〉〉 is given by the formula

Kn = 2π
∫ R

0
(ϕv′2|gn|2 + ḡn[n

2uqn − ϕv′q′
n]) dr, (4.7)

where v andqn are as defined inProposition 4.1.

Proof. Formula (4.2) implies

Kn =
∫
M

n2

ϕ2
ḡn[ϕu

′vgn + ϕu′qn + vqn]µ+
∫
M

ḡ′
n[vq

′
n − vv′gn]µ

= 2π
∫ R

0
n2ḡn

[
u′vgn + u′qn + 1

ϕ
vqn

]
dr + 2π

∫ R

0
ḡ′
n[ϕvq

′
n − ϕvv′gn] dr.

(4.8)

We can integrate one of these terms by parts to obtain∫ R

0
ḡ′
nϕvq

′
n dr = ḡnϕvq

′
n

∣∣∣∣R0 −
∫ R

0
ḡnv

′ϕq′
n dr −

∫ R

0
ḡnv

d

dr
(ϕq′

n) dr

= −
∫ R

0
ḡn

(
v′ϕq′

n + n2

ϕ
qn + d

dr
(ϕv′gn) + n2u′vgn

)
dr,

usingEq. (4.3) and the fact that at bothr = 0 andr = R, eithergn or ϕ vanishes.
Plugging this expression into (4.8), we get

Kn = 2π
∫ R

0
ḡn[n

2u′qn − ϕv′q′
n] dr − 2π

∫ R

0
v

d

dr
(ϕv′ḡngn) dr.

Another integration by parts establishes formula (4.7). �

The last part is to compute the functionqn more explicitly. The fact that we can do this
is what enables us to get complete results. Our final formula for the curvature depends only
on first integrals, which can be computed explicitly for any givenϕ, u, andgn. There are
three somewhat different solutions for the annulus, disc, and sphere, due to the different
boundary conditions forqn. First we need to define some auxiliary functions.
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Definition 4.4. Let ξ(r) be a function such thatξ′(r) = 1/ϕ(r). There are three cases:

ξ(r) =




∫ r
0

1
ϕ(ρ) dρ on the annulus,

ln r + ∫ r
0

(
1

ϕ(ρ) − 1
ρ

)
dρ on the disc,

ln r − ln (R− r) + ∫ r
0

(
1

ϕ(ρ) − 1
ρ

− 1
R−ρ

)
dρ on the sphere.

(4.9)

Given a functiongn(r) vanishing on the boundary components (if any) ofM, define for
integersn > 0 functionsHn andJn by the formulas

Hn(r) =
∫ r

0
[nu′(s) − v′(s)]gn(s) enξ(s) ds, (4.10)

Jn(r) =
∫ R

r

[nu′(s) + v′(s)]gn(s) e−nξ(s) ds. (4.11)

Becauseϕ(0) = 0 on the disc and sphere, we must haveϕ′(0) = 1 for smoothness; similarly,
we must haveϕ′(R) = −1 on the sphere. So the expansions as written are to ensure that the
integrands are smooth at 0 andR; the only singular behavior ofξ appears in the logarithmic
terms. The conditions onξ ensure that both of the integrals (4.10) and (4.11) are proper and
well-defined regardless of which surface we are on.

Proposition 4.5. The solutionqn of the problem(4.3) is given by

qn(r) = −1
2(e−nξ(r)Hn(r) + enξ(r)Jn(r) + An enξ(r) + Bn e−nξ(r)), (4.12)

whereAn andBn are constants given by

An = Hn(R) + Jn(0)

e2nξ(R) − 1
, Bn = Hn(R) + e2nξ(R)Jn(0)

e2nξ(R) − 1
(annulus),

An = e−2nξ(R)Hn(R), Bn = 0 (disc),

An = 0, Bn = 0 (sphere).

Hereξ(r),Hn(r), andJn(r) are defined byDefinition 4.4.

Proof. The main point is that solutions of the homogeneous equation

ϕ(r)
d

dr

(
ϕ(r)

d

dr
qn(r)

)
− n2qn(r) = 0

are given byqn(r) = e±nξ(r). Thus we can use the standard Green function approach to find
the formula. Integration by parts yields the particular combinations ofHn andJn. Finally the
boundary conditions yieldAn andBn: the difference in the formulas on the three surfaces
is due to the fact that on the annulus, we have two boundary conditionsq′

n(0) = q′
n(R) = 0,

while on the sphere we have only the requirement thatqn be finite atr = 0 andr = R, and
on the disc we have a combination of the two types. �
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From these explicit formulas, we can obtain a very explicit formula for the curvature of
the area-preserving diffeomorphism group.

Proposition 4.6. The curvatureKn = 〈〈R̃(Yn,X)X, Ȳn〉〉 is given by

Kn = −nπ
∫ R

0
(H ′

n(r)Jn(r) − J ′
n(r)Hn(r)) dr

−nπ




(
1

e2nξ(R) − 1

) ∣∣Hn(R) + Jn(0)
∣∣2 + |Jn(0)|2 (annulus),

e−2nξ(R)|Hn(R)|2 (disc),

0 (sphere).

(4.13)

Proof. The formulas for curvature follow readily from formula (4.12) forqn and formula
(4.7) for the curvature. �

It is convenient to have the following simplification of the integral which appears in the
curvature computation for all three surfaces.

Lemma 4.7. On the annulus, disc, and sphere, we have∫ R

0
(H̄ ′

nJn − J̄ ′
nHn) dr = 2 Re

∫ R

0
H̄ ′
nJn dr = −2 Re

∫ R

0
J̄ ′
nHn dr. (4.14)

Proof. This is just an integration by parts of one or the other term. On the annulus both
equations are obvious becauseHn(0) = Jn(R) = 0. On the disc or the sphere, however,
we have to check that limr→0+ Hn(r)Jn(r) = 0, and on the sphere, we have to check that
limr→R− Hn(r)Jn(r) = 0. Both limit computations are essentially the same and involve an
application of L’Hôpital’s rule, which we can omit. �

5. The nonpositivity criterion

The general formula (4.13) gives the simplest known formula for the curvature of the
area-preserving diffeomorphism group, in the special case of rotational flow. Although we
do not expect to be able to write the integral (4.14) any more explicitly, we can still study
its sign and determine necessary and sufficient conditions for it to be nonpositive.

The next lemma gives one part of the nonpositive curvature criterion.

Lemma 5.1. If u andϕ are real analytic functions on[0, r] with X = u(r)∂θ andds2 =
dr2 + ϕ2(r) dθ2 the metric on a smooth manifold M, and if the curvature operator̃RX is
nonpositive, then the functionQ = (uϕ′)′/u′ is defined for allr ∈ [0, R].

Proof. We will show that ifQ is undefined for anyr0 ∈ (0, R), then we have positive
curvature. IfQ(r0) is undefined, then the analytic functionu′ has a zero of order at least
one more thanv′. So we have

u(r) = u(r0) + u(k+j)(r0)

(k + j)!
(r − r0)k+j + O((r − r0)k+j+1),
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v(r) = v(r0) + v(k)(r0)

k!
(r − r0)k + O((r − r0)k+1)

for some integersk ≥ 1, j ≥ 1, with v(k)(r0) �= 0 andu(k+j)(r0) �= 0. It is possible that
r0 = 0 or r0 = R; however, we can assume without loss of generality thatr0 < R, since
any boundary issues atr0 = R are identical to those atr0 = 0.

Choose anε > 0 such thatr0 + ε < R, and define

g1(r) =
{

1 if r0 ≤ r ≤ r0 + ε,

0 otherwise.

The fact thatg1 is not continuous does not affect the result sinceg1 only appears in integrals;
thus we can approximate it in theL∞ norm by a smooth function.

First we suppose thatξ is nonsingular atr0. Then the integralH1 given byEq. (4.10) can
be approximated by

H1(r) = −eξ(r0)v(k)(r0)

k!
(r − r0)k + O(εk+1)

for r ∈ [r0, r0 + ε], and since

J ′
1(r) = − v(k)(r0)

(k − 1)!
e−ξ(r0)(r − r0)k−1 + O(εk)

on this interval, we can compute usingLemma 4.7the integral appearing in all three cur-
vature formulas:

∫ R

0
(H ′

1(r)J1(r) − J ′
1(r)H1(r)) dr = −

(
v(k)(r0)εk

k!

)2

+ O(ε2k+1).

Using the fact that, to order O(εk+1), we have

H1(R) = −eξ(r0)v(k)(r0)εk

k!
and J1(0) = e−ξ(r0)v(k)(r0)εk

k!
,

the curvature formula (4.13) can be seen to give positive numbers on each surface for
sufficiently smallε > 0. We omit the details.

Now we consider the case whereξ is singular atr0. So we must be on a disc or a sphere
with r0 = 0, and thus eξ(r) ≈ r. Forr ∈ [0, ε], we have

H1(r) = − v(k)(0)

(k − 1)!(k + 1)
rk+1 + O(εk+2),
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and

J ′
1(r) = − v(k)(0)

(k − 1)!
rk−2 + O(εk−1).

UsingLemma 4.7, we can compute

∫ R

0
(H ′

1(r)J1(r) − J ′
1(r)H1(r)) dr = − (v(k)(r0)εk)2

(k − 1)!(k + 1)!
+ O(ε2k+1).

So in this case as well, formula (4.13) for the disc or sphere yields positive curvature.�
The next proposition gives us useful information about the functions which satisfy the

differential inequalityϕQ′ +Q2 ≤ 1, which will be used in the proof of the nonpositive
curvature criterion.

Proposition 5.2. Suppose Q is a real analytic function on[0, R] such that

ϕ(r)Q′(r) +Q2(r) ≤ 1 (5.1)

for all r ∈ (0, R). Then for any0 < a < b < R, if |Q(r)| < 1on[a, b], we have the inequal-
ity

arctanhQ(b) − arctanhQ(a) ≤ ξ(b) − ξ(a). (5.2)

In addition, we have the following:

• If |Q(r)| > 1, then Q is strictly decreasing at r.
• If Q′(0) = 0, then eitherQ(r) < 1 for all r ∈ (0, R), or Q(r) ≡ 1 on [0, R].
• If Q′(R) = 0, then eitherQ(r) > −1 for all r ∈ (0, R), or Q(r) ≡ −1 on [0, R].

Proof. The inequality (5.2) follows by integrating (5.1). The fact that|Q(r)| > 1 implies
Q′(r) < 0 is obvious from (5.1).

If Q′(0) = 0, then (5.1) implies by continuity thatQ2(0) ≤ 1. If Q(0)< 1 then (5.2)
implies thatQ(r) < 1 for all r < R. If Q(0) = 1 andQ(r) �≡ 1 for all [0, R], then by
analyticity, eitherQ(r) < 1 orQ(r) > 1 for all sufficiently smallr. But it is not possible
that Q(r) > 1 for all sufficiently smallr, since thenQ must be strictly decreasing. So
Q(r) < 1 for some smallr, and thus (5.2) implies that in factQ(r) < 1 for all r ∈ (0, R).

The argument forQ′(R) = 0 is identical. �
These computations culminate in the following criterion for a steady flow in two dimen-

sions to have nonpositive curvature operator.

Theorem 5.3. SupposeX = u(r)∂θ on an annulus, disc, or sphere M with metricds2 =
dr2 + ϕ2(r) dθ2, with u andϕ real-analytic functions on[0, R] with appropriate conditions
at 0 and R to ensure smoothness on M, and with u nowhere zero.

Definev = ϕ′u. ThenR̃X is nonpositive if and only if the functionQ ≡ v′/u′ is defined
for all r ∈ [0, R] and satisfies

ϕ(r)Q′(r) +Q2(r) ≤ 1 for all r ∈ (0, R). (5.3)
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The basic idea of this proof is that the ratioJ ′
n/H

′
n does not depend ongn:

J ′
n(r)

H ′
n(r)

= −n+Q(r)

n−Q(r)
e−2nξ(r).

Therefore the integral (4.14) can be computed using integration by parts. In the simplest
case whereHn(R) = 0 andJn(0) = 0, all the boundary terms in the formula (4.13) vanish.
Thus if (n−Q) does not vanish anywhere,

Kn = 2nπRe
∫ R

0
J ′
n(r)Hn(r) dr

= nπ

∫ R

0

J ′
n(r)

H ′
n(r)

d

dr
(|Hn(r)|2) dr

= nπ

∫ R

0

d

dr

(
n+Q(r)

n−Q(r)
e−2nξ(r)

)
|Hn(r)|2 dr

= 2n2π

∫ R

0

e−2nξ(r)[ϕ(r)Q′(r) +Q2(r) − n2]

ϕ(r)[n−Q(r)]2
|Hn(r)|2 dr. (5.4)

The key idea then is that as long as the inequalityϕQ′ +Q2 ≤ n2 is satisfied for every
n > 0, the integral is nonpositive. If the boundary terms do not vanish, we can verify that
they are also nonpositive. The main complication is the possibility thatQ(r0) = n for some
r0 ∈ (0, R), and we deal with this case-by-case.

Proof. By Lemma 5.1, we know thatQ must be defined everywhere forR̃X to be nonpos-
itive.

If for somer0, ϕ(r0)Q′(r0) +Q2(r0) > 1, then by continuity we haveϕQ′ +Q2 > 1
on some interval (a, b). Choose a subinterval (c, d) such thatQ �= 1 on (c, d). Choose a
functiong1 such that

∫ d

c

(u′(r) − v′(r)) eξ(r)g1(r) dr =
∫ d

c

(u′(r) + v′(r)) e−ξ(r)g1(r) dr = 0,

and so that

g1(r) = 0 for r /∈ (c, d), and g1 �≡ 0 on (c, d).

Of course, there is an infinite-dimensional space of such functions.
Then we will haveH1(R) = J1(0) = 0, so on all three surfaces, the curvature formula is

the same:

K1 = 2π
∫ d

c

|H1(r)|2ϕ(r)Q′(r) +Q2(r) − 1

ϕ(r)[1 −Q(r)]2
dr > 0.
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Thus byProposition 4.2, the curvature operator̃RX is not nonpositive.
Now we suppose thatϕQ′ +Q2 ≤ 1 for all r ∈ (0, R); we will show thatKn ≤ 0 for

everyYn. The computation is slightly different on the three possible surfaces.
On the disc or sphere, we must haveQ′(0) = 0, and thusProposition 5.2implies that

eitherQ(r) ≡ 1 on [0, R], or Q(r) < 1 for all r ∈ (0, R). In caseQ ≡ 1 andn = 1, we
know by formula (4.10) thatH1 ≡ 0, so thatK1 = 0 by formula (4.13). IfQ < 1 on (0, R),
or if n > 1, thenQ(r) �= n on (0, R) and formulas (5.4) and (4.13) can be used to give

Kn = 2n2π

∫ R

0

e−2nξ(r)[ϕ(r)Q′(r) +Q2(r) − n2]

ϕ(r)[n−Q(r)]2
|Hn(r)|2 dr

− nπ

{(
2n

n−Q(R)

)
e−2nξ(R)|Hn(R)|2 (disc),

0 (sphere).

The integral is clearly nonpositive. On the disc,Q(R) < 1; thus the boundary term is also
nonpositive.

If n = 1, one is naturally concerned about the possibility thatQ(0) = 1 (for the disc
or sphere) or thatQ(R) = 1 (for the sphere). However, the approximations eξ(r) ≈ r and
H1(r) ≈ r3 ensure that the integral is proper atr = 0, even ifQ(0) = 1. Similar formulas
ensure that the integral on the sphere is proper atr = R.

The annulus is more complicated, because there is no restriction onQ(0) orQ(R); thus
the boundary terms are harder to control. We consider three cases: eitherQ(0)< n and
Q(R) < n; or Q(R) > n andQ(0)> n; or Q(0) ≥ n andQ(R) ≤ n. The caseQ(0)< n

andQ(R) > n is impossible byProposition 5.2.
If Q(0)< n andQ(R) < n, the computation (5.4) yields

Kn = 2n2π

∫ R

0

e−2nξ(r)[ϕ(r)Q′(r) +Q2(r) − n2]

ϕ(r)[n−Q(r)]2
|Hn(r)|2 dr

− nπ e−2nξ(R)
(

2n

n−Q(R)
|Hn(R)|2 + 1

e2nξ(R) − 1

∣∣∣Hn(R) + e2nξ(R)Jn(0)
∣∣∣2) ,

which is nonpositive.
If Q(0)> n andQ(R) > n, we do the same calculation as (5.4), except for reversing the

roles ofHn andJn:

Kn = 2n2π

∫ R

0

e2nξ(r)[ϕ(r)Q′(r) +Q2(r) − n2]

ϕ(r)[n+Q(r)]2
|Jn(r)|2 dr

− nπ

(
2n

n+Q(0)
|Jn(0)|2 + 1

e2nξ(R) − 1
|Hn(R) + Jn(0)|2

)
,

which is again nonpositive.
In caseQ(0) ≥ n andQ(R) ≤ n, we have to do a little more. ByProposition 5.2, either

n = 1 andQ(r) ≡ 1 on [0, R], or Q(r0) = n for exactly oner0 ∈ [0, R]. In the first case,
we can as before conclude thatH1 ≡ 0 so thatK1 ≤ 0 by (4.13). In the second case, we do
the same computation as in (5.4) using the function [Hn(r) −Hn(r0)] instead ofHn(r), and
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obtain after some simplifications

Kn = 2n2π

∫ R

0

e−2nξ(r)[ϕ(r)Q′(r) +Q2(r) − n2]

ϕ(r)[n−Q(r)]2
|Hn(r) −Hn(r0)|2 dr

− nπ

(
2n

n−Q(R)
e−2nξ(R)|Hn(R) −Hn(r0)|2 + 2n

Q(0) − n
|Hn(r0)|2

)

− nπ

(
|Hn(r0)+Jn(0)|2+ |Hn(R) + Jn(0)|2

e2nξ(R) − 1
− e−2nξ(R)|Hn(R)−Hn(r0)|2

)
.

The terms on the first and second line are clearly nonpositive. The term on the last line is
as well, using the triangle inequality

|Hn(R) −Hn(r0)| ≤ |Hn(R) + Jn(0)| + |Hn(r0) + Jn(0)|.
With the analysis of this last case, we are done showing thatKn is nonpositive for everygn
and everyn > 0 if and only if the condition (5.3) forQ is satisfied. Thus byProposition 4.2,
we are done. �

6. Applications of the criterion

In this section we will derive some consequences of the criterion for nonpositive curvature
proved inTheorem 5.3.

The simplest case is whenQ is constant, which happens whenM is a flat disc or cylinder.

Proposition 6.1. If the metric on M is flat(i.e. ϕ′′ ≡ 0) and −1 ≤ ϕ′ ≤ 1, then every
X = u(r)∂θ has nonpositive curvature operatorR̃X.

Proof. If ϕ′ is a constantk, thenQ ≡ k, regardless ofu. So the criterion is thatk2 ≤ 1.
�

For example, on a disc inR2, we haveϕ′ ≡ 1. On a conical annulus embedded inR
3,

we haveϕ′ ≡ a, with 0< a < 1. Thus both examples yield flows of nonpositive curvature.
On an annulus withϕ′ ≡ a, with a > 1, no flow has nonpositive curvature operator.

The next proposition gives a local condition at the center of a disc for the curvature
operator to be nonpositive. It also shows that ifM is not flat, then in a small disc there
will always be some rotational flows which satisfy the criterion ofTheorem 5.3and others
which do not.

Proposition 6.2. Suppose M is a disc or sphere such thatK(0), the curvature of M at the
origin, is nonzero. SupposeX = u(r)∂θ satisfiesR̃X ≤ 0. Thenu′′(0) �= 0 and

0 <
u(0)K(0)

u′′(0)
≤ 2. (6.1)

Conversely, if u′′(0) �= 0 and the strict inequality

0 <
u(0)K(0)

u′′(0)
< 2 (6.2)
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is satisfied, then for someε > 0, X satisfiesR̃X ≤ 0 on the disc

Bε(0) = {(r, θ)|0 ≤ r ≤ ε}.

Proof. The proof is just based on Taylor expansions ofu andϕ at r = 0. We have

u(r) = u(0) + 1
2u

′′(0)r2 + O(r4), ϕ(r) = r − 1
6K(0)r3 + O(r5).

SoQ = (uϕ′)′/u′ has the expansion

Q(r) = 1 − u(0)K(0)

u′′(0)
+ O(r2),

if u′′(0) �= 0. On the other hand, ifu′′(0) = 0, thenQ(0) is undefined, which means̃RX is
not nonpositive. IfR̃X is nonpositive, then sinceQ′(0) = 0 andϕ(0) = 0, the inequality
(5.3) implies thatQ2(0) ≤ 1. Thus−1 ≤ Q(0) ≤ 1, which implies the inequalities (6.1).

On the other hand, if (6.2) is satisfied, thenQ2(0)< 1. So for sufficiently smallr,

ϕ(r)Q′(r) +Q2(r) < 1

by continuity. Thusu satisfies the criterion ofTheorem 5.3for 0 ≤ r ≤ ε, for some
ε ≥ 0. �

The following proposition gives one of the simplest examples.

Proposition 6.3. If ϕ′(r) �= −1 for all r ∈ [0, R], then the velocity field determined by

u(r) = 1

1 + ϕ′(r)

has nonpositive curvature operator.

Proof. In this case,uϕ′ = 1 − u, so thatQ(r) ≡ −1 and the criterion ofTheorem 5.3is
automatically satisfied. �

Proposition 6.3applies in particular on discs whose curvature is everywhere negative,
since thenϕ′′(r) = −K(r)ϕ(r) > 0 and thusϕ′(r) > 1 for all r. It also applies on portions
of spheres with everywhere positive curvature, since thenϕ′(D) = −1, whereD is the
diameter of the sphere, whileϕ′′(r) = −K(r)ϕ(r) < 0 for all r implies thatϕ′(r) > −1 for
all r ≤ R < D.

However, there are no examples on an entire sphere of strictly positive curvature.

Proposition 6.4. If M is a sphere with positive sectional curvature, then for every
steady flow X with isolated nondegenerate zeroes, there is a divergence-free Y such that
〈〈R̃(Y,X)X, Y〉〉 > 0.
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Proof. We can of course reduce this to the case where the metric is rotationally symmetric;
then the requirement that the curvature ofM is positive means thatϕ′′(r) < 0 for all r. The
definition ofQ yields the equation

[Q(r) − ϕ′(r)]u′(r) = ϕ′′(r)u(r). (6.3)

SinceX has no zeroes except atr = 0 andr = R, u is nowhere zero, and neither isϕ′′(r) by
the curvature condition. ThusQ− ϕ′ never vanishes.

AssumeR̃X ≤ 0. Thenϕ(r)Q′(r) +Q2(r) ≤ 1, soQ(0)< 1 as inProposition 6.2. Sim-
ilarly we find thatQ(R) > −1.

SinceQ(0) − ϕ′(0)< 0 andQ(R) − ϕ′(R) > 0,Q− ϕ′ must change sign in the interval
(0, R), a contradiction. �

The following proposition gives a qualitative picture of the types of flows that may have
nonpositive curvature operator: if the manifold has positive or negative curvature, thenu
must be increasing or decreasing inr.

Proposition 6.5. If the curvature of M is nowhere zero and if X is a steady vector field on
M with R̃X nonpositive, thenu′(r0) �= 0 as long asϕ(r0) �= 0.

Proof. By Eq. (6.3), sinceQ must be defined at every point,u′(r0) = 0 implies either
u(r0) = 0 or ϕ′′(r0) = 0. Sinceu is nowhere zero, we must haveϕ′′(r0) = 0, and since
ϕ′′(r0) = −K(r0)ϕ(r0) with K(r0) �= 0, we knowϕ(r0) = 0. �

Of course, on a discu must have a critical point at the origin, and on a sphereu must
have critical points at the north and south poles, due to smoothness.

Now that we have some idea of what flows with nonpositive curvature operator look
like, we can study the consequences this condition has for fluid stability. The physical
interpretation of nonpositive curvature is a result of the Rauch comparison theorem, which
allows us to estimate the growth of Jacobi fields along geodesics. Since geodesics in the
area-preserving diffeomorphism group are flows of ideal fluids and Jacobi fields are linear
Lagrangian perturbations, an upper bound on the curvature gives us a lower bound on the
rate of growth of Jacobi fields.

The appropriate form of Rauch’s theorem for volume-preserving diffeomorphism groups
was proven by Misiołek[7].

Theorem6.6(Misiołek).Letη be a geodesic inDµ(M) with tangent vectoṙη = X(t) ◦ η(t),
andY (t) be a nonzero solution of the Jacobi equation

D̃2

∂t2
(Y (t) ◦ η(t)) + R̃(Y (t), X(t))X(t) ◦ η = 0

with Y (0) = 0 and(D̃Y/∂t)(0) = Ẏe. If 〈〈R̃(Y (t), X(t))X(t), Y (t)〉〉 ≤ 0 for all t, then

‖Y (t)‖L2 ≥ ‖Ẏe(0)‖L2 · t

for all t ≥ 0.
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Typically, many Lagrangian perturbations of an ideal fluid grow with time. (See examples
in the author’s previous work[9].) However, if the curvature operatorR̃X is nonpositive,
theneveryLagrangian perturbation grows with time, with growth at least O(t). So we have
uniform linear Lagrangian instability for flowsX = u(r)∂θ if ϕQ′ +Q2 ≤ 1. It would be
interesting to determine whether steady flows not satisfying this condition have any bounded
Jacobi fields.

We can combine this result with previous work. The Arnold linear stability criterion says
that ifX = u(r)∂θ satisfies the condition

(d/dr)((1/ϕ)(d/dr)(ϕ2u))

ϕu
�= 0 for anyr ∈ [0, R], (6.4)

then every linearized Eulerian perturbation remains bounded in time. (Swaters[11] contains
a general proof.) A theorem of the author[9] then says that any linearized Lagrangian
perturbation of such a flow must grow at most quadratically in time. So if the conditions
(5.3) and (6.4) are both satisfied, then every linearized Lagrangian perturbationY (t) of the
fluid flow satisfies

at ≤ ‖Y (t)‖L2 ≤ bt2 for t sufficiently large,

for some constantsa andb.

7. Related questions

By the theorem of Rouchon[10], we know that for any divergence-free vector field on
an arbitrary manifoldM, the curvature operator̃RX takes on negative values ifX is not a
Killing field, and is nonnegative ifX is a Killing field; it is never strictly positive. The result
of this paper is almost complementary; ifX is a steady solution of the Euler equation on a
surface, then the curvature operator takes positive values ifX does not satisfy the criteria of
Theorem 5.3and is nonpositive if it does; it is never strictly negative.

As noted above, it seems possible that the various restrictions imposed to obtain the
StructureTheorem 3.3and nonpositivityTheorem 5.3, such as the existence of a global
stream function, the isolated and nondegenerate zeroes, and analyticity, may be unnecessary.
On the other hand, it is conceivable that some new phenomena may arise ifX is a harmonic
vector field, or ifX vanishes on a curve. These would be surprising and interesting.

Two very natural questions arise, however. First, what happens in three or more dimen-
sions? We still expect to obtainX〈X,X〉 = 0, but we no longer expect to get such an explicit
formula forXor the metric, and we probably also cannot get a formula for the inverse Lapla-
cian in quadratures. The three-dimensional case therefore is probably quite different, and
would be very interesting to study.

Second, what happens ifX is not assumed to be a steady flow? It is conceivable that
an arbitrary divergence-free vector field could have a curvature operatorR̃X that is strictly
negative. A solutionX(t) of the nonsteady Euler equation for which the curvature operator
was bounded above by some negative constant would have exponential growth of all Jacobi
fields, by the Rauch comparison theorem. If this were possible, it would be the first time
geometric methods rigorously predicted exponential instability.
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