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Abstract

A steady ideal fluid flow on a surface corresponds to a geodesic in the area-preserving diffeomor-
phism group. The sign of the curvature operator along this geodesic has been of interest since Arnold
noticed its connection to Lagrangian stability of the flow: nonpositive curvature implies by the Rauch
comparison theorem that Lagrangian perturbations grow at least linearly in time.

We obtain a new necessary and sufficient criterion for a steady flow with analytic stream function
and isolated zeroes to have nonpositive curvature operator: either the surface is a flat torus, and the
fluid flow has constant pressure; or the surface is a sphere, disc, or annulus with a globally-defined
polar coordinate system such that the metricsfs=gl dr? + ¢?(r)d6?. In the latter case, the velocity
field must be of the fornX = u(r)dy. Furthermore, the functio® = (u¢’)’'/u’ must be defined for
everyr and satisfy the differential inequalityQ’ + Q2 < 1.

This criterion is proved by using a new formula for the curvature of the area-preserving diffeomor-
phism group in the rotationally symmetric case, involving only first integrals in one variable, rather
than infinite sums or the solution of a PDE.

Elementary consequences of the criterion are also discussed: for example, there are no flows with
nonpositive curvature operator on the standard round sphere; and on a flat surface, every rotationally
symmetric flow has nonpositive curvature operator. Finally we show that if a steady flow satisfies
both this nonpositive curvature criterion and the well-known Eulerian stability criterion of Arnold,
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then all Lagrangian perturbations grow polynomially in time, in fifenorm. Thus this is the first
time methods of Riemannian geometry have given rigorous information on stability.
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1. Introduction

The discovery by Arnold] that the motion of an ideal fluid on a manifdilis given by
geodesics on the volume-preserving diffeomorphism g@@V/) has led to an interest in
the curvature of this infinite-dimensional Riemannian manifold. Since Jacobi fields along
geodesics represent linearized Lagrangian perturbations of ideal fluid motion, the sign of
the curvature gives information about linear stability.

Arnold [2] was the first to compute a formula for the curvatur@‘qr(?l‘z), using Fourier
series. Lukatskfb] used a similar technique to find a formula for the curvatut®,ofM) for
any compact surface. Simpler formulas were obtained)f,@(rsz) by Arakelyan-Savvidy
[1], Dowker-Wei[4], and Yoshidg12], using special properties of spherical geometry.
Other general formulas have been derived using submanifold geometry by Migiptek
and using the Jacobi equation by Rouctip@]. These formulas have generally suffered
the drawback of being computationally unwieldy, requiring infinite sums or the solution of
partial differential equations, and thus many properties of curvature have been obscured.

One is mainly interested in the sign of the curvature operator along a particular geodesic.
If R denotes the curvature  tensorbp(M) andXis the velocity field tangent to the geodesic,
then the curvature operatBry := Y — R(Y, X)X appears in the Jacobi equation. We hope
to find conditions orX such thaRy is either nonpositive or nonnegative in all directions.

The case in whicRy is nonpositive is especially interesting from the view of Lagrangian
stability, since for such flows we know by the Rauch comparison theorem that Jacobi fields
must grow in time. Therefore, finding criteria for a flow to have such curvature is the only
known rigorous way to prove Lagrangian instability using geometric techniques.

Flows generating nonnegative curvature operators are completely understood. Misiotek
[7] demonstrated that X is a Killing field on an arbitrary manifolé, then the curvature
operator is nonnegative. Rouchf®] proved the converse, at least for the special case of
a domain inR?3 (the technique is very easily generalized to an arbitrary manifold of any
dimension, as shown in the author’s dissertafiji.

For nonpositive curvature, progress has been slower. Afgpshowed that fok € N,
the vector fieldX = sin(kx)d, on the torugT? had nonpositive curvature operator. Misiotek
[7] and Lukatsky[6] separately proved the more general result that i§ a divergence-
free field on a manifoldM with nonpositive curvature and satisfigg X = 0 (that is, the
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flow of X consists of geodesics o), thenRy is nonpositive. Misiotek called such vector
fields “pressure-constant.” It was unknown whether there were any other vector fields which
would makeR y nonpositive.

In this paper we demonstrate that there are many choic¥safich are not pressure-
constant but which have nonpositive curvature operator. We obtain a necessary and sufficient
criterion for a vector fieldX on an orientable surfackl to have nonpositive curvature
operator, under the condition thégenerate a steady fluid flow (i.e. that the corresponding
geodesic irD, (M) is also a 1-parameter subgroup). We also assume for convenience that
X has only isolated zeroes and has a real-analytic stream function.

The criterion is thaX must be of the form

X =u(r)oy (1.1)
on a rotationally symmetric manifold with Riemannian metric of the form
ds? = dr? + ¢?(r) d6? (1.2)

for some functionsiandg. M must be either a torus with a flat metric (so thag constant),
or a disc, sphere, or annulus. In these latter cases, the quantity

0() = (d/dr)(7(r)w’(r)) 1.3)
u'(r)
must be defined for all and satisfy the differential inequality
P(r)Q'(r) + Q%) <1 forallr. (1.4)

The proof has two parts. First, Bection 3we show that itX generates a steady fluid flow
andY is another divergence-free vector field witki,[Y] = 0, then((R(Y¥, X)X, Y)) > 0.

Thus it is fairly easy to find examples of sections where the curvature is either zero or
positive. If X = sgradf, thenY = f sgradf is one example, and we can easily show that
the curvature is in fact positive unle¥$X, X) = 0. If X(X, X) = 0, then the speed of each
particle remains constant in time, and we demonstrate that this condition, combined with
incompressibility, imply rotational symmetry not only for the flow but for the surface as
well. Thus the condition tha®x be nonpositive implie&gs. (1.1) and (1)2

In addition, we can perform a local analysis of this condition near an isolated z¥ro of
and conclude that any isolated zeroeXafust be elliptic. This implies that the surface is
either a sphere, a disc, an annulus, or a torus. In this way we obtain a structure theorem: any
flow for which the curvature operator is nonpositive must have a very special rotationally
symmetric form. By narrowing down the possibilities this way, we are able to set up the
more explicit analysis of the next section.

Surprisingly, the case of the torus is quite different from the other surfaces. The reason
is that on the other surfaces, every rotationally symmetric flow is actually a steady solution
of the Euler equations. On the torus this is not necessarily the case, due to the nontrivial
homology (basicallyyx X is a vector field whose curl vanishes, but on the torus it need not
be the gradient of an actual function). Because of this, we can find many other examples of
fields Y commuting withX which also yield strictly positive sectional curvature, unlbks
is actually flat ancK is therefore pressure-constant. So this reduces to Misiotek’s result, and
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this is how we get all the previously known examples on the torus. For the other surfaces,
we need to analyze the formulas more carefully.

In Section 4ve provide a very explicit new formula for the curvature along a rotationally
symmetric flow in terms of first integrals of various explicit functions, which are slightly
different in each of the three remaining cases (sphere, disc, and annulus). This is the first
time such a formula for the curvature has been obtained, even for a special case such as
this, which does not involve either infinite sums or the (implicit) inversion of the Laplacian.
The reason we can obtain such a formula is basically because in the rotationally symmetric
two-dimensional case, the Laplacian can be inverted quite explicitly.

In Section 5 we show how this formula for the curvature can be written as a sum
of nonpositive terms and a term involving the functi@nlif Q is defined everywhere and
satisfies (1.4), we show thatthe{lﬁix(Y), Y)) < OforallY. If not, we show how to construct
a Y which yields positive curvature.

In Section 6 we derive some interesting consequences of the condition (1.4). For ex-
ample, ifo(r) = r (so thatM is the standard flat disc or annulusTf), then Q(r) = 1
and the condition is automatically satisfied; thus for every rotational flow on the flat disc
or annulusRy is nonpositive. The casg(r) = 1 is the pressure-constant case on an an-
nulus, which yieldsQ(r) = 0, reproducing Misiotek’s result. The flat disc, the flat an-
nulus, and the flat cylinder are the only spaces on which every steady rotational flow
has nonpositive curvature operator. We show that on every nonflat rotationally symmet-
ric surface, there are some flows which do satisfy the criterion and others which do
not.

If the curvature ofM is either always positive or always negative, we can determine
gualitative criteria for the existence of flows with a stream function and isolated zeroes,
with Ry nonpositive. For example, for such a flangannot have a maximum or minimum
except wherp vanishes (i.e., where the metric becomes singular, either at the center of a
disc or the two poles of a sphere).

In addition, we show that there are no such flows on a positive-curvature sphere. Thus, in
a sense, ifthe curvature of the underlying manifold is sufficiently positive, then the curvature
of the volume-preserving diffeomorphism group must also be somewhere positive, at least
in any section containing a steady flow.

Finally we discuss consequences for Lagrangian stability. The Rauch comparison the-
orem, as proven foD, (M) by Misiotek [7], shows that if the curvature operatRy is
nonpositive, then all Jacobi fieldsgrow at least linearly in time, in the2 norm. So we
have at least “slow” (polynomial) instability in the Lagrangian sense, uniformly for all
Lagrangian perturbations, for flows satisfying this condition, and this was not previously
known.

Even though the curvature operator of such aflow is zero in some directions and negative-
definite in many, we cannot say that Jacobi fields necessarily grow exponentially in time.
This is because the explicit example of the aufl®brcomputing the growth rate of Jacobi
fields along plane-parallel Couette flow, shows that linear growth of Jacobi fields is more
typical. It had been previously conjectured by many authors that negative-curvature di-
rections would imply “fast” (exponential) Lagrangian instability, but the author’s previous
work shows that the difference between fast and slow instability cannot be determined by
curvature alone, but only by the Eulerian stability of the flow.
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One interesting result is that ¥ = u(r)dy satisfies the inequality (5.3) and also the
Arnold Eulerian stability criterion

(d/dr)((1/¢)(d/dr)(¢*u)) 20
ou

’

then by a theorem in the author’s previous pdpgwe get both a lower bound and an upper
bound for the long-time growth of every Jacobi fieldZif: at least Of) and at most Q).
So we are guaranteed slow instability in this case.

We conclude irBection Avith some natural questions inspired by this research, including
the generalizations to three dimensions and to nonsteady flows. For an excellent general
overview of the subject, see Chapter 4 of Arnold-Khd8in

2. Review of geometry formulas

LetM be an orientable surface, possibly with bound&l; The group under composition
of diffeomorphisms oM is denotedD(M). For simplicity we will assume all objects are
C™.

At a diffeomorphismy € D(M), the tangent spacg, D(M) consists of elements o 7,
whereU is a vector field onM. If (-, ) is the Riemannian metric okl and u is the
corresponding area 2-form, the Riemannian mgtric)) on7, D(M) s given by the formula

({(Uon,Von)) = / (U,V)yonu, foranyvectorfieldé/ andV. (2.1)
M

Given a vector fielcK on M, we may construct a right-invariant vector fieddon D(M) by
definingX, = X o n for eachy € D(M). The covariant derivativ€ onD(M) then satisfies

(VxY)y = (VxY)on 2.2)

on right-invariant vector fields. See Misiot¢K] for details.

Now considerD,, (M), the submanifold of>(M) consisting of diffeomorphisms sat-
isfying n*n = . At any n, the elements of the tangent spaGe,, (M) are of the form
X o n, whereXis divergence-free and tangent to the boundary.Theetric (2.1) orD(M)
induces a metric o®,, (M) defined by

((Uon,Von))E/ (U,V>OI7M=/ (U, V).
M M

This induced metric is right-invariant.

An arbitrary vector field (not necessarily tangendid) can be orthogonally projected
onto the space of divergence-free vector fields tangent to the boundary using the Hodge
decomposition. We notice first that the space of gradients of functiokd®the orthogonal
complement offigD,, (M) in TqD(M), since for anyp : M — R and anyV € TigD, (M),
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we have

[ wvon= [ dvgviu- [ odvva=[ svmuu=o

M M M oM

Thus, given a vector field, we solve the Neumann boundary value problem

Af =divZ, (VEmam ={Z, n)lom
to obtain a functiorf, unique up to a constant, and then define the orthogonal projection
P(Z) as

P(Z)=Z-Vf (2.3)

By constructionP(Z) is divergence-free and tangent to the boundary.
The covariant derivativ®’ on the submanifol®,, (M) is the projection of the covariant
derivativeV. For right-invariant field andY, then, we have
(VxY), = P(VxY)on. (2.4)

The curvature on the volume-preserving diffeomorphism group is derdt&ince the

metric onD,, (M) is right-invariant, so is the curvature, and it is sufficient to perform all

computations at the identity. By formula (2.4), the Riemann curvature operator is given by
Rx(Y) = R(Y, X)X = P(VyP(VxX) — VxP(Vy X) + Vix 1] X). (2.5)

The sectional curvatuié of the 2-plane spanned by vectétsndY in TiaD, (M) is given
by

(R(Y, X)X, Y))
(X, X)) (Y, Y)) — (X, 1))2

K(X,Y)=

However we are concerned only with the sign of the sectional curvature, and so the normal-
izing factor in the denominator is unimportant. Thus we will work with the non-normalized
curvature, which we denote by

K(X,Y) = ((R(Y, X)X, Y)),

or simplyK if the 2-plane is fixed.
The Euler equation, satisfied by the tangent vector to a geodesic (right-translated to the
identity) is

X
— +P(VxX) =0.
ot (VxX)
In caseXis independent of time, we have the steady Euler equ&{®i X) = 0, which is
often written in the forniVy X = —V p, wherep is the pressure. In this case, the geodesic
is a 1-parameter subgroup of the volume-preserving diffeomorphism group, and the first
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term of the curvature formula (2.5) vanishes. This simplification is our primary reason for
working only with steady solutions of the Euler equation, although typically in studies of
stability these are the only ones considered anyway.

3. The nonpositivity structure theorem

In what follows we use the fact that #(Vx X) = 0 and [X, Y] = 0, then most of the
terms in the curvature formula (2.5) vanish. We impose the requirement that the steady
vector fieldX have a globally defined stream functifyrso thatX = sgradf’; this makes it
easy to find a commuting vector fie¥l

Proposition 3.1. Suppose Mis atwo-dimensional manifgdssibly with boundary. Letfbe
a function on M which is constant on each boundary component of M. Défiaesgradf,
and suppose thafx X = —V p for some function p

If ((Ii(Y, X)X, Y)) < Ofor every divergence-free Y tangenta®d, thenX (X, X) = 0.

Proof. DefineY = fX. SinceX(f) = (sgradf, V f) = 0, we know thatY is divergence-
free and tangent tdM, and also thatX, Y] = 0. Then sincd’(Vx X) = 0 by assumption,
formula (2.5) implies

UROCOX 1) = = [ (V3P 0 = [ (PO ). POV O
Thus we must havB(Vy X) = 0, so thatVy X = V¢ for some functiorg. Thus
Vg=fVxX=—fVp=-V(fp)+pV/
and therefore sgragt fp) = pX. As a result,
0= div(pX) = pdivX + X(p) = X(p).

SoX(p) =0.
SinceVy X = —Vp, we knowX (X, X) = —2X(p) = 0, and we are done. O

Lemma 3.2. Suppose X is a divergence-free vector field on a surface satisfy(iKigX) =
0 everywhere. Then any isolatetbndegenerate zero of X must be ellifgtie. with index
+1).

Proof. Choose normal coordinates in a neighborhood of an isolated, nondegenerate zero
of X, so that the metric looks like

ds? = dx? + dy? + O(x? + y?),
andX(0, 0) = 0. Write

X = (ax + by)ox + (cx + dy)9, + 02 + y?).
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Then the divergence-free condition impliés= —a, while the nondegeneracy condition
impliesa? + be # 0, and we can compute

X(X, X) = 2(d® + bc)[ax® + (b + ¢)xy — ay?] + O((x* + y2)¥?).

So we must have = 0 andb = —c, with ¢ # 0, which clearly is an elliptic zero. O

In the following we give a structure theorem which severely restricts the types of steady
flows that have nonpositive curvature operators. The assumptions that the zexXoa® of
isolated and thaX has a global stream function are somewhat restrictive, but still allow
many flows. It seems likely that more sophisticated techniques could be used to eliminate
these assumptions.

Theorem 3.3. Suppose X is a vector field on an orientable surface M of the form
sgradf, with f a function on M having only isolatedondegenerate zerogeand constant
on each component 6. Suppose thaX (X, X) = 0 everywhere on M

Then the following hold

e M is either a sphergea torus a disg or an annulus
e M has a globally defined metric of the fors? = dr? + ¢2(r) d9?, whered € S1, and
there is some&R > 0 such that —
— If Mis a torus thenr e S1(R), the circle with circumference,Rnd¢(r) is periodic
in r and nowhere vanishing
— If Mis a spherethenr € [0, R] andg(r) vanishes iff = 0orr = R.
— If Mis adisc thenr € [0, R] andg(r) vanishes ifi = 0.
— If Mis an annulusthenr € [0, R] andg(r) is nowhere vanishing
e X = u(r)dy, with u(r) nowhere vanishing

Proof. SinceX is tangent to the boundary, the condition tidX, X) = 0 implies thatX
either vanishes everywhere on the boundary or vanishes nowhere. By assumption, the zeroes
of Xareisolated, and thogcannot vanish on the boundary. So we can use the standard Hopf—
Poincaé theorem, which says that the sum of the indiceX isfthe Euler characteristic of
the manifold. Since the indices are &/l by Lemma 3.2the Euler characteristic can only
be 2, 1, or 0. Thus iK has two zeroes, theWl must be a sphere. X has one zerdyl must
be a disc. IfX has no zeroes, theM is either an annulus or a torus.

Let E be the unique unit vector field which is everywhere perpendiculaX, taith
w(E, X) > 0. (Eis defined at every point except at the two possible zeroXs)dthen the
divergence oK is given by

1
divX =(VgX, E ——(VxX, X) =0
v (VEX, )+(X,X)< xX, X) ,

and thus sincgVx X, X) = 0, we must havgVgX, E) = 0. The consequence is that
(VEE, X) =0.

Since we obviously havevg E, E) = 0, we therefore know thaig E = 0. This implies
that the integral curves & are geodesics. We will define the radial coordinate be the
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parameter along each geodesic, so that 3/dr. If M is a sphere or a disc,will be zero
at one of the zeroes of. On an annulus, we set= 0 on one boundary component. On a
torus, the zero set afcan be any integral curve &

SinceX = sgradf, we know that every nonsingular integral curve is a level sétarid
thus is diffeomorphic to a circle. The equati¢X, d/dr) = 0 implies that each curve is a
level set ofr as well. For eacl, the flow of X maps any point on the circle= rg to itself
after a timeT'(r) > 0. Fix a radial geodesic, and define the angular coordih&tebe the
flow of each point on this geodesic for timeinder the vector fieldf{(r)/27) X. Then we
have, for eachy, a diffeomorphism of the standard circ§é(2x) to the level set = ry.

In these coordinates the metric takes the form

ds® = dr? + ¢%(r, 6) do>.

Definingu(r) = 2/ T(r), we find thatX = u(r)dy. Thus the conditioX (X, X) = Oimplies
thaty is a function ofr alone.

All that remains is to check the stated behaviopafndu at an isolated zero of. In a
neighborhood of an isolated zero, our coordinate system coincides with Riemannian normal
coordinates, and by the usual smoothness requirements, we can seeniisttvanish to
first order at a zero oX. Thusu cannot also vanish at a zeroXfby nondegeneracy. [

It is easy to see that the converse of this theorem is true as willaifdM have the
properties stated in the conclusion, thémvill be a steady Euler flow. The only case in
which this might not work is iM is a torus; in that casé/x X = —u?(r)e(r)¢’(r),, and
this is only the gradient of a function on the torus if the condition

R
fo W2()e(r)e/ () dr = 0

holds, since the pressure function must also have p&iod
This odd property of the nonflat torus actually enables us to eliminate it as a candidate
for having a flow with nonpositive curvature operator.

Proposition 3.4. If X = u(r)dy is a steady solution of the Euler equation on a torus
T? = SY(R) x S1(27) with metricds? = dr? + ¢?(r) d6?, then the curvature operatd®x
is nonpositive if and only i is constant

Proof. LetY = v(r)dy for some functiorv(r). Then [X, Y] = 0, so that the curvature of
the diffeomorphism group reduces to

(R(Y. X)X, ¥)) = fM<P(vYX), P(Vy X)) 1.

We compute that

VX = o)l ()

r r R 1 R 9
=V —/ vupg' dp + —/ vupg dp | — —/ vupy dp | —,
0 R 0 R 0 or
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so that

R
P(VyX) = — (% /0 w(Pu(p)p(o)e (o) dp) 2.

An easy way to make this nonzero is to choo§6 = u(r)e(r)¢’'(r), if ¢ is not constant.
Then the curvature will be strictly positive.

If, on the other handy is constant, then we can compute tRgtX = 0 and also that
the curvature oM vanishes. In this casi;is a pressure-constant flow in the terminology
of Misiotek [7], who proved that such flows have nonpositive curvature opeRatarsing
a different curvature formula. O

4. Explicit formulas for curvature

Theorem 3.3educes the question of nonpositive curvature to certain special cases. To
obtain further results, we compute an explicit formula for the curvature op&Ratonhere
X = u(r)dp and the metric is & = dr? + ¢?(r) d92. We assume the manifold is defined by
the inequalities G< » < R and is either an annulus, a disc, or a sphere.

First we compute the curvature operator directly from the definition. We will use the
convenient fact that on all three surfaces, every divergence-free vectolYfighdch is
tangent to the boundary can be writterYas: sgradg, wheregis constant on each boundary
component. Because of the rotational symmetry, it is natural to exgpasé Fourier series
g(rn0)=>"22 . gn(r) e whereg_,(r) = g,(r). We consider a particular component of
this expansion, and let

Y, = sgradg, (r) €"). (4.1)

If n # 0, then sinceg,(r) € must be constant on the boundary, we must hgye) =
on the boundary. On the other hang, may be an arbitrary constant on each boundary
component.

Proposition 4.1. If X = u(r)dg on an annulugdisc or sphere with a rotationally symmetric
metric, then the curvature operator of the diffeomorphism group in direction X is given by
Rx(Yo) = 0and if n #£ 0,

Bx(Ya) = P (—inu’(r)v(r)gn(r)é"ear _ ”(2(”; )(”gn(r) €05 — in()ga(r) €3,
-2 a0em + B0 @), @2)

wherev(r) = u(r)¢’(r) andg, is defined to be the solution of the Neumann problem

1 d dg,\  n? od e o2
o (0%) = a0 = s SO + ) @3

with boundary conditiory), = 0.
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Proof. SinceP(VxX) = 0, formula (2.5) simplifies to
Rx(Y) = P(—=VxP(VyX) + Vix.y1 X). (4.4)

First, in casen = 0, we haveYp = sgradgo(r) = (go(r)/¢(r))ds. We computeVyX =
—go(Nu(r)¢’(r)d,, and since this is a gradient, we kn®{Vy X) = 0. Also, we obviously
have [X, Y] = 0. Thus both terms in formula (4.4) vanish,Re(Yo) =

In the remainder of the proof we suppose that 0, so thafg, vanishes on the boundary
(if any). Then we can write, by formula (4.1),

Y(r,6) = ——gn(")e' o+ —g,,(")eineae-
o(r) o(r)
For brevity, we will use the abbreviatiap = €.
We first computevy, X

/

inu
Vy, X = Vgnendy — p gnendg — V(vgnen). (4.5)

Using formula (2.4) and the fact thBtvanishes on gradients, we find that
!/

nu in
P(Vy, X) = v'gnendr — . gnendo — g en O — Eqnenag, (4.6)

whereg, (r) € is defined to be the solution of the Neumann problem

inu'(r)
¢(r)

Computing the Laplacian and divergence explicitly, we obtain formula (4.3). The condition
thatg,, vanish on the boundary is a consequence of the facgthatnishes on the boundary.
Having obtained formula (4.6), the other terms of formula (4.4) are straightforward to
compute.
We obtain:

Aga(r) €") = div <v/(r)g,, (e, — M0 e‘”eag) |

n2uu’ + v’

VXP(VYn X) = in(’/“)/ + vu/)gnenar + Tgnenae

v v .
+in <u’ + g;) Gnendy — ;q;enae — V(inugye,),

ZMM/

. n _
Vix,v,] X = inuv'g,e,0, + gnendyp — V(inuvgey).

Combining the two expressions, and using the factBhanishes on gradients, we obtain
formula (4.2). O

We immediately obtain the following useful consequence of formula (4.2).

Proposition 4.2. The curvature operatoR is nonpositive if and only jfor everyn > 0
and every vector fieldf, of the form(4.1),the sectional curvatur (X, Y,) is nonpositive
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Proof. Formula (4.2) shows that(R(Y,, X)X, ¥,»)) = O unlessm = —n, by the usual
orthogonality of Fourier series. Thus we can write

o0 o
(Rx(1), 7)) = Y ((R(Yw, X)X, ¥,)) =2 K(X,Y,).
n=-—00 n=1
The proposition is then obvious. O

In the next proposition we show how the seemingly complicated formula (4.2) leads to
a much simpler expression for the sectional curvature.

Proposition 4.3. If n # 0, the curvaturek,, = ((R(Y,, X)X, Y,)) is given by the formula

R
K= 2 [ lau P+ TloPua, — /g, o (@.7)
where v andy, are as defined ifProposition 4.1

Proof. Formula (4.2) implies

2
n-_
Kn = f — 8nlu'vgn + o' gy + vgn] +/ gnlvg, — vv'g]lu
M9® M

R R
_ 1
= 271/ n’g, [u/vgn +u'g, + ;vqn] dr + Zn/ g,lovg, — pvv'g,]dr.
0 0

(4.8)

We can integrate one of these terms by parts to obtain

R _ R _ R _ d
f g,ovq, dr = gaovg, |& — / gnV @, dr — / gnvd—(wqi,) dr
0 0 0 r

R_ n2 d 2
= _/ &n <v’<pq,’1 + —qn + _(‘Pv/gn) +n ”/Ugn> dr,
0 10 dr

usingEq. (4.3 and the fact that at both= 0 andr = R, eitherg, or ¢ vanishes.
Plugging this expression into (4.8), we get

R

R d
K, = an gnlnu'qn — ov'q,]dr — 271/ vd—(gpv’gngn) dr.
0 0 r

Another integration by parts establishes formula (4.7). O

The last part is to compute the functigp more explicitly. The fact that we can do this
is what enables us to get complete results. Our final formula for the curvature depends only
on first integrals, which can be computed explicitly for any giyem, andg,. There are
three somewhat different solutions for the annulus, disc, and sphere, due to the different
boundary conditions fof,. First we need to define some auxiliary functions.
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Definition 4.4. Let&(r) be a function such th&t(r) = 1/¢(r). There are three cases:

fs ﬁ dp on the annulus
£r)={Inr+[5 (ﬁ - %) do onthe dis¢ (4.9)
Inr—In(R—r)+ [y (Wlp) -1- R%p) dp onthe sphere

Given a functiong, () vanishing on the boundary components (if any)Myfdefine for
integers: > O functionsH,, andJ, by the formulas

H,(r) = fo r[nu/(s) — V' (s)]gn(s) €56) dis, (4.10)

Ju(r) = / R[nu’(s) + V' (5)] gn(s) € "E0) dis. (4.11)

Becaus@(0) = 0 on the disc and sphere, we must h@{(@) = 1 for smoothness; similarly,

we must havg'(R) = —1 on the sphere. So the expansions as written are to ensure that the
integrands are smooth at 0 aRpthe only singular behavior gfappears in the logarithmic
terms. The conditions apensure that both of the integrals (4.10) and (4.11) are proper and
well-defined regardless of which surface we are on.

Proposition 4.5. The solutiory, of the problen(4.3)is given by
qn(r) = _%(e—HS(V)Hn(r) + () In(r) + An gl 4 By, e—né(r))’ (4.12)

whereA,, and B,, are constants given by

_ R+ Q) o Ha(R) + e 7,(0) /
= gwm g b= 2R — 1 (annulus),
A, =e25R g (R), B,=0 (disc),
A, =0, B, =0 (sphere).

Here&(r), H,(r), and J,(r) are defined byefinition 4.4

Proof. The main point is that solutions of the homogeneous equation
d d
o(r)— | 0(r)—an(r) | — n®qu(r) =0
dr dr

are given by, () = €60) Thus we can use the standard Green function approach to find
the formula. Integration by parts yields the particular combinatiot,andJ, . Finally the
boundary conditions yield, and B, : the difference in the formulas on the three surfaces
is due to the fact that on the annulus, we have two boundary conditjé@s= g,,(R) = 0,
while on the sphere we have only the requirementghdte finite at- = 0 andr = R, and

on the disc we have a combination of the two types. O
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From these explicit formulas, we can obtain a very explicit formula for the curvature of
the area-preserving diffeomorphism group.

Proposition 4.6. The curvaturK, = ((Ii(Yn, X)X, 17,,)) is given by

R / (HL) () — T2 Ha(r))

(eZnS(l:!-) ) |Hy(R) + Ty (0)| + ,(0)? (annulus),

—nw (4.13)

e 25, (R)? (disc),
0 (sphere).
Proof. The formulas for curvature follow readily from formula (4.12) fprand formula

(4.7) for the curvature. O

It is convenient to have the following simplification of the integral which appears in the
curvature computation for all three surfaces.

Lemma 4.7. On the annulusdisc and spherewe have
R _ _ R _ R _
/ (H. Jy — T Hy) dr = 2 Re/ . Jydr = —2 Re/ 7 Hy dr (4.14)
0 0 0

Proof. This is just an integration by parts of one or the other term. On the annulus both
equations are obvious becaudg(0) = J,(R) = 0. On the disc or the sphere, however,
we have to check that lim, o+ H,(r)J,(r) = 0, and on the sphere, we have to check that
lim,_, g~ H,(r)J,(r) = 0. Both limit computations are essentially the same and involve an
application of L'Hopital’s rule, which we can omit. O

5. The nonpositivity criterion

The general formula (4.13) gives the simplest known formula for the curvature of the
area-preserving diffeomorphism group, in the special case of rotational flow. Although we
do not expect to be able to write the integral (4.14) any more explicitly, we can still study
its sign and determine necessary and sufficient conditions for it to be nonpositive.

The next lemma gives one part of the nonpositive curvature criterion.

Lemma 5.1. If u and ¢ are real analytic functions of0, r] with X = u(r)dy and ds =
dr? 4 ¢?(r) d9? the metric on a smooth manifold,Mnd if the curvature operatolRX is
nonpositivethen the functiorQ = (u¢’)’ /u’ is defined for all- € [0, R].

Proof. We will show that ifQ is undefined for anyg € (0, R), then we have positive
curvature. IfQ(ro) is undefined, then the analytic functiahhas a zero of order at least
one more tham’. So we have

u*+)(ro)

TR (r — ro)**7 + O((r — ro) /1Y),

u(r) = u(ro) +
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v®(ro)
k!

v(r) = v(ro) + (r — ro)* + O((r — ro)**1)
for some integerg > 1, j > 1, with v®)(r) # 0 andu*+9)(rg) # 0. It is possible that
ro = 0 orrp = R; however, we can assume without loss of generality that R, since
any boundary issues a3 = R are identical to those ap = 0.

Choose anr > 0 such thatg + ¢ < R, and define

lifro<r<ro+e,

g1(r) = ,
0 otherwise

The fact thag is not continuous does not affect the result sigicenly appears in integrals;
thus we can approximate it in tHe* norm by a smooth function.

First we suppose thdtis nonsingular atg. Then the integrakl given byEq. (4.1Q can
be approximated by

00y (rp)

TR U ro)* + O(e" 1)

Hi(r) = —

for r € [ro, ro + €], and since

v®)(ro)

~T=D) &S00 — o)1 4 O()

J1(r) =

on this interval, we can compute usihgmma 4.7the integral appearing in all three cur-
vature formulas:

2
p®) (ro) gk

R —_— -
fo (Hy(r)Ja(r) = J1(r)Ha(r)) dr = — ( T ) + 0@+,

Using the fact that, to order &{(t1), we have

e5(0)y®) () ek
k!

e E00)y®) (o) ek

Hi(R) = — 2 .

and J1(0) =

the curvature formula (4.13) can be seen to give positive nhumbers on each surface for
sufficiently smalle > 0. We omit the details.

Now we consider the case wherés singular atg. So we must be on a disc or a sphere
with ro = 0, and thus &) ~ r. Forr € [0, €], we have

) (0)

k+1 k+2
_(k—l)!(k+1)r+ +OE).

Hi(r) =
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and

U(k)(o) k—2

K0 = =gy 2+ 0E ).

UsingLemma 4.7 we can compute

(W0t

G- Do ToE

R -
A(ﬂ@Mﬂammmmw=—

So in this case as well, formula (4.13) for the disc or sphere yields positive curvatlte.

The next proposition gives us useful information about the functions which satisfy the
differential inequalitypQ’ + Q2 < 1, which will be used in the proof of the nonpositive
curvature criterion.

Proposition 5.2. Suppose Q is a real analytic function fh R] such that
e(NQ'(N + 0%(r) < 1 (5.1)

forall » € (0, R). Thenforany < a < b < R,if |Q(r)| < 1on][a, b], we have the inequal-
ity

arctanhQ(b) — arctanhQ(a) < £(b) — &(a). (5.2)
In addition we have the following

e If |Q(r)| > 1,then Q is strictly decreasing at r
e If Q'(0) = 0, then eitherQ(r) < 1forall r € (0, R), or Q(r) = 10n][0, R].
e If O'(R) = 0,then eitherQ(r) > —1forall r € (0, R), or Q(r) = —10n]0, R].

Proof. The inequality (5.2) follows by integrating (5.1). The fact th@(r)| > 1 implies
Q’(r) < 0 is obvious from (5.1).

If Q'(0) =0, then (5.1) implies by continuity tha??(0) < 1. If Q(0) < 1 then (5.2)
implies thatQ(r) < 1 for all r < R. If Q(0)=1 and Q(r) # 1 for all [0, R], then by
analyticity, eitherQ(r) < 1 or Q(r) > 1 for all sufficiently smallr. But it is not possible
that Q(r) > 1 for all sufficiently smallr, since thenQ must be strictly decreasing. So
Q(r) < 1 for some smalf, and thus (5.2) implies that in fa@(r) < 1 for all» € (0, R).

The argument fo’(R) = 0 is identical. O

These computations culminate in the following criterion for a steady flow in two dimen-
sions to have nonpositive curvature operator.

Theorem 5.3. SupposeX = u(r)dy on an annulusdisc or sphere M with metrials? =
dr? + ¢?(r) do?, with u andy real-analytic functions of0, R] with appropriate conditions
at 0 and R to ensure smoothness onavid with u nowhere zero

Definev = ¢'u. ThenRy is nonpositive if and only if the functio@ = v'/«’ is defined
for all » € [0, R] and satisfies

o(NQ'(r)+ 0%() <1 forallir € (O, R). (5.3)
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The basic idea of this proof is that the ratify H, does not depend og),:

Ju(r) _ _n+00) o 21E()
H,,(r) n—0(r) .

Therefore the integral (4.14) can be computed using integration by parts. In the simplest
case wherd1,,(R) = 0 andJ,(0) = 0, all the boundary terms in the formula (4.13) vanish.
Thus if (@ — Q) does not vanish anywhere,

R
Ky, =2nm Re/ J(r)H,(r)dr
0

o [F e d
= |y g (H P

_ o [fd (4 00) o 2
_nn/(; a(n—Q(r)e >|Hn(r)| dr

R a—2n&(r) ’ 2 _ 2
2 [FETNQ() + 0%0) — n?)
”A o(ln — 012

|H,,(r)|? dr. (5.4)

The key idea then is that as long as the inequaliy + Q2 < n? is satisfied for every
n > 0, the integral is nonpositive. If the boundary terms do not vanish, we can verify that
they are also nonpositive. The main complication is the possibility@tas) = n for some
ro € (0, R), and we deal with this case-by-case.

Proof. By Lemma 5.1we know thaQ must be defined everywhere far to be nonpos-
itive.

If for somero, ¢(ro) Q'(ro) + Q%(ro) > 1, then by continuity we haveQ’ + 0? > 1
on some intervald, b). Choose a subintervat,(d) such thatQ # 1 on (, d). Choose a
functiongs such that

d d
[ wor-venennd = [ wo +vene Dned o
c c
and so that
g1(r)=0 forr ¢ (c,d), and g1#0o0ng(,d).
Of course, there is an infinite-dimensional space of such functions.

Then we will haveH;(R) = J1(0) = 0, so on all three surfaces, the curvature formula is
the same:

20(NQ'(r) + 0%(r) - 1

oL -0 U0

d
K1=2n/ |Hy()|
C
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Thus byProposition 4.2the curvature operatdty is not nonpositive.

Now we suppose thatQ’ + Q2 < 1 for all r € (0, R); we will show thatK, < 0 for
everyY,. The computation is slightly different on the three possible surfaces.

On the disc or sphere, we must hag§0) = 0, and thusProposition 5.dmplies that
eitherQ(r)=1on [O R], or Q(r) < 1 for all » € (O, R). In caseQ = 1 andn = 1, we
know by formula (4.10) thatl; = 0, so thaK 1 = 0 by formula (4.13). IfQ0 < 10on (Q R),
orifn > 1, thenQ(r) # n on (O R) and formulas (5.4) and (4.13) can be used to give

L, [Re O + 02—
o =202 | o) — 000 [Hn(r)1" e

—nw : (mzé’ R ) e~2¢(R)| H, (R)|? (disc)
0 (sphere)

The integral is clearly nonpositive. On the dig&(R) < 1; thus the boundary term is also
nonpositive.

If n =1, one is naturally concerned about the possibility 340) = 1 (for the disc
or sphere) or thaD(R) = 1 (for the sphere). However, the approximatiof® ev r and
Hi(r) ~ r® ensure that the integral is properrat 0, even ifQ(0) = 1. Similar formulas
ensure that the integral on the sphere is proper=atr.

The annulus is more complicated, because there is no restrictig{@ror Q(R); thus
the boundary terms are harder to control. We consider three cases: @{he« n and
O(R) < n;or Q(R) > nandQ(0) > n; or Q(0) > n and Q(R) < n. The caseQ(0) < n
andQ(R) > n is impossible byProposition 5.2

If 0(0) <nandQ(R) < n, the computation (5.4) yields

e (FETOIO0 L 00 - o
o = 2 | ool —oep )

2 (R + e | (R) +e2"5(R)Jn_(m\2),

—2n&(R)
— e —
" (n —0(R) 2E® 1

which is nonpositive.
If 0(0) > nandQ(R) > n, we do the same calculation as (5.4), except for reversing the

roles ofH, andJ,:

R 00/ (1) + 0%(r) — n?)

— 2 ) .
= H/O o(ln + 0012 |/a(r)1"d
2n 1 L
—ni <TQ(O)|Jn(O)|2 =+ m|Hn(R) + Jn(0)|2> ,

which is again nonpositive.

In caseQ(0) > n andQ(R) < n, we have to do a little more. Byroposition 5.2either
n=1andQ(r) = 1on [0 R], or Q(ro) = n for exactly onerg € [0, R]. In the first case,
we can as before conclude thfat = 0 so thatK; < 0 by (4.13). In the second case, we do
the same computation as in (5.4) using the functidp(l) — H,(ro)] instead ofH,,(r), and
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obtain after some simplifications

L [Fe0[p() () + %) — ]
K= 2n ”/o o — 001

2
—nm [ — 2 e 2R B, (R) — Hy(ro) 2 +
n— O(R)

|Hy (r) — Ha(ro)? dr

2
—Q(O) — |Hn(r0)| )
|Hy(R) + T, (0)

—nmw <|Hn(r0)+-]n(0)|2+ e2nE[R) _ 1

- e—Z"E(RHHn(R)—Hn(ro)F) :
The terms on the first and second line are clearly nonpositive. The term on the last line is
as well, using the triangle inequality

|Hy(R) — Hy(ro)l < [Ha(R) + J,(0)| + | Hy(ro) + Ju(0)].

With the analysis of this last case, we are done showingdhas nonpositive for every,
and every: > 0 if and only if the condition (5.3) foR is satisfied. Thus bProposition 4.2
we are done. O

6. Applications of the criterion

In this section we will derive some consequences of the criterion for nonpositive curvature
proved inTheorem 5.3
The simplest case is whé&is constant, which happens whigtis a flat disc or cylinder.

Proposition 6.1. If the metric on M is flafi.e. ¢” = 0) and -1 < ¢’ < 1, then every
X = u(r)dp has nonpositive curvature operatBry.

Proof. If ¢/ is a constank, thenQ = k, regardless ofi. So the criterion is that? < 1.
O

For example, on a disc iR2, we havey’ = 1. On a conical annulus embeddedRiA,
we havey’ = a, with 0 < a < 1. Thus both examples yield flows of nonpositive curvature.
On an annulus witlp’ = a, with a > 1, no flow has nonpositive curvature operator.

The next proposition gives a local condition at the center of a disc for the curvature
operator to be nonpositive. It also shows thaMifis not flat, then in a small disc there
will always be some rotational flows which satisfy the criteriolTb&orem 5.3nd others
which do not.

Proposition 6.2. Suppose M is a disc or sphere such thg0), the curvature of M at the
origin, is nonzero. Suppose = u(r)dy satisfieRy < 0. Thenu”(0) # 0 and

u(0)K(0)

Converselyif u”(0) # 0 and the strict inequality
0 WOKO) -, (6.2)

u”(0)



S.C. Preston / Journal of Geometry and Physics 53 (2005) 226—248 245

is satisfiedthen for some > 0, X satisfieRx < 0 on the disc

B,(0)={(r0)I0=r <¢}.

Proof. The proof is just based on Taylor expansionsiahdg atr = 0. We have
u(r) = u(0) + 3u"O)? +0(*), () =r— gK(0)3+0(").

SoQ = (u¢') /u’ has the expansion

1(0)K (0)

2
u”—@) + O(),

o()=1-

if u”(0) # 0. On the other hand, if”(0) = 0, thenQ(0) is undefined, which mearidy is

not nonpositive. IfRy is nonpositive, then sinc@’(0) = 0 andy(0) = 0, the inequality

(5.3) implies thatp?(0) < 1. Thus—1 < Q(0) < 1, which implies the inequalities (6.1).
On the other hand, if (6.2) is satisfied, théR(0) < 1. So for sufficiently smalt,

o(r)Q'(N + 0%(n) <1

by continuity. Thusu satisfies the criterion offheorem 5.3for 0 < r < ¢, for some
e > 0. O

The following proposition gives one of the simplest examples.

Proposition 6.3. If ¢/(r) # —1for all r € [0, R], then the velocity field determined by

1

=0

has nonpositive curvature operator

Proof. In this caseu¢’ = 1 — u, so thatQ(r) = —1 and the criterion oTheorem 5.3s
automatically satisfied. O

Proposition 6.3applies in particular on discs whose curvature is everywhere negative,
since theny”(r) = —K(r)e(r) > 0 and thusy/(r) > 1 for all r. It also applies on portions
of spheres with everywhere positive curvature, since €P) = —1, whereD is the
diameter of the sphere, whilé' (r) = —K(r)¢(r) < 0 for all r implies thaty'(r) > —1 for
allr <R < D.

However, there are no examples on an entire sphere of strictly positive curvature.

Proposition 6.4. If M is a sphere with positive sectional curvatuthen for every
steady flow X with isolated nondegenerate zertesre is a divergence-free Y such that
((R(Y, X)X, Y)) > 0.
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Proof. We can of course reduce this to the case where the metric is rotationally symmetric;
then the requirement that the curvaturévbis positive means that’(r) < 0 for allr. The
definition of Q yields the equation

[0(r) — @' (N’ (r) = ¢" (N)u(r). (6.3)

SinceX has no zeroes exceptrat 0 andr = R, uis nowhere zero, and neithergé(r) by
the curvature condition. Thug — ¢’ never vanishes.

AssumeRy < 0. Theng(r)Q'(r) + 0%(r) < 1, s0Q(0) < 1 as inProposition 6.2Sim-
ilarly we find thatQ(R) > —1.

SinceQ(0) — ¢'(0) < 0andQ(R) — ¢'(R) > 0, Q — ¢’ must change sign in the interval
(O, R), a contradiction. O

The following proposition gives a qualitative picture of the types of flows that may have
nonpositive curvature operator: if the manifold has positive or negative curvaturey then
must be increasing or decreasingin

Proposition 6.5. If the curvature of M is nowhere zero and if X is a steady vector field on
M with Ry nonpositive, them’(rg) # 0 as long asp(rg) # 0.

Proof. By Eq. (6.3, sinceQ must be defined at every point,(rg) = 0 implies either
u(ro) = 0 or ¢”(rg) = 0. Sinceu is nowhere zero, we must hay€(rg) = 0, and since
¢"(ro) = —K(ro)p(ro) with K(rg) # 0, we knowg(rg) = 0. O

Of course, on a disa must have a critical point at the origin, and on a spheneust
have critical points at the north and south poles, due to smoothness.

Now that we have some idea of what flows with nonpositive curvature operator look
like, we can study the consequences this condition has for fluid stability. The physical
interpretation of nonpositive curvature is a result of the Rauch comparison theorem, which
allows us to estimate the growth of Jacobi fields along geodesics. Since geodesics in the
area-preserving diffeomorphism group are flows of ideal fluids and Jacobi fields are linear
Lagrangian perturbations, an upper bound on the curvature gives us a lower bound on the
rate of growth of Jacobi fields.

The appropriate form of Rauch’s theorem for volume-preserving diffeomorphism groups
was proven by Misiotek7].

Theorem 6.6 (Misiotek). Letn be a geodesic ifv,, (M) with tangent vectol = X () o (1),
and Y (¢) be a nonzero solution of the Jacobi equation

- )
%(Y(t) on(n)) +R¥Y (). X(1))X()on =0

with ¥Y(0) = 0 and (DY/a:)(0) = Y,. If ((R(Y (1), X(1))X(¢), Y(¢))) < Ofor all t, then

1Y ()2 = YOl 2 - ¢

forall z > 0.
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Typically, many Lagrangian perturbations of an ideal fluid grow with time. (See examples
in the author’s previous worf9].) However, if the curvature operat&y is nonpositive,
theneveryLagrangian perturbation grows with time, with growth at leas) C§o we have
uniform linear Lagrangian instability for flow® = u(r)d if Q' + Q2 < 1. It would be
interesting to determine whether steady flows not satisfying this condition have any bounded
Jacobi fields.

We can combine this result with previous work. The Arnold linear stability criterion says
that if X = u(r)dy satisfies the condition

(d/dr)((1/¢)(d/dr)(¢?u))
ou
then every linearized Eulerian perturbation remains bounded in time. (S\Etkeontains
a general proof.) A theorem of the auth®] then says that any linearized Lagrangian
perturbation of such a flow must grow at most quadratically in time. So if the conditions
(5.3) and (6.4) are both satisfied, then every linearized Lagrangian perturliétjaf the
fluid flow satisfies

#0 foranyr €0, R], (6.4)

at < [|[Y®)l 2 < br*  forsufficiently large

for some constants andb.

7. Related questions

By the theorem of Rouchai 0], we know that for any divergence-free vector field on
an arbitrary manifoldV, the curvature operatdﬁix takes on negative valuesXis not a
Killing field, and is nonnegative Xis a Killing field; it is never strictly positive. The result
of this paper is almost complementaryXifs a steady solution of the Euler equation on a
surface, then the curvature operator takes positive valegags not satisfy the criteria of
Theorem 5.3nd is nonpositive if it does; it is never strictly negative.

As noted above, it seems possible that the various restrictions imposed to obtain the
StructureTheorem 3.3and nonpositivityTheorem 5.3such as the existence of a global
stream function, the isolated and nondegenerate zeroes, and analyticity, may be unnecessary.
On the other hand, it is conceivable that some new phenomena may atiseaiharmonic
vector field, or ifX vanishes on a curve. These would be surprising and interesting.

Two very natural questions arise, however. First, what happens in three or more dimen-
sions? We still expect to obtait(X, X) = 0, but we no longer expect to get such an explicit
formula forX or the metric, and we probably also cannot get a formula for the inverse Lapla-
cian in quadratures. The three-dimensional case therefore is probably quite different, and
would be very interesting to study.

Second, what happensXis not assumed to be a steady flow? It is conceivable that
an arbitrary divergence-free vector field could have a curvature op&atthat is strictly
negative. A solutiorX () of the nonsteady Euler equation for which the curvature operator
was bounded above by some negative constant would have exponential growth of all Jacobi
fields, by the Rauch comparison theorem. If this were possible, it would be the first time
geometric methods rigorously predicted exponential instability.
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